文章编号:1001-5078(2024)04-0635-07

·图像与信号处理 ·

基于激光主动照明的舰船尾流图像探测系统

段子科1,宗思光1,杨劭鹏1,陈 报1,张 鑫2

(1. 海军工程大学电子工程学院,湖北 武汉 430034;2. 海军航空大学 青岛校区,山东 青岛 266041)

摘要:通过探测舰船尾流与环境不同的激光后向散射特性,可反演出舰船的航向、航速、吨位 等关键信息,具有极高的军事价值。本文基于激光主动照明探测模式,结合工业相机与高重频 激光器构建了一套舰船尾流成像探测系统,实现了针对舰船尾流气泡的大视场、大动态范围的 有效探测。利用蒙特卡洛方法构建了舰船尾流成像探测仿真平台,验证了该方法的可行性;搭 建了基于激光主动照明的舰船尾流图像探测系统样机,并在室内实验室水池条件下开展了大 量实验,验证了系统性能,并就实验结果分析了不同系统参数对探测性能的影响;同时开展了 可见光干扰条件下探测性能的评估,验证了本系统同时存在较强的抗可见光干扰能力,为激光 主动照明成像探测模式在舰船尾流探测中的实践提供了理论支撑。 关键词:舰船尾流;激光探测;图像处理

中图分类号:TN249;TP391.41 文献标识码:A DOI:10.3969/j.issn.1001-5078.2024.04.022

Ship wake image detection system based on laser active illumination

DUAN Zi-ke¹, ZONG Si-guang¹, YANG Shao-peng¹, CHEN Bao¹, ZHANG Xin²

(1. College of Electronic Engineering, Naval University of Engineering, Wuhan 430034, China;

2. Qingdao Branch, Naval Aeronautical University, Qingdao 266041, China)

Abstract: By detecting the laser backscattering characteristics of the ship's wake which are different from the environment, the ship's course, speed, tonnage and other key information can be counter-performed, which has a high military value. In this paper, a set of ship wake imaging detection system is constructed on top of the laser active illumination detection mode combining an industrial camera and a high-frequency laser, which achieves the effective detection of ship wake bubbles with a large field of view and a large dynamic range. Monte Carlo method is used to construct the simulation platform of ship wake imaging detection, and the feasibility of this method is verified. In addition, a prototype of ship wake image detection system based on laser active illumination is built, and a large number of experiments are carried out under the conditions of indoor laboratory pool to verify the system performance, and the influence of different system parameters on the detection performance is analyzed. At the same time, the evaluation of detection performance under visible light interference is carried out, which verifies that the system has strong anti-visible light interference ability, and provides theoretical support for the practice of laser active illumination imaging detection mode in ship wake detection.

Keywords: ship wake; laser detection; image processing

作者简介:段子科(1999-),男,硕士研究生,主要研究方向为水下激光探测技术。

基金项目:国防科研基金项目资助。

通讯作者:张 鑫(1998 -),男,硕士,助教,主要研究方向为航空搜救、航空军械技术。E-mail:1714308601@qq. com 收稿日期:2023-06-25;修订日期:2023-09-14

1 引 言

舰船在行驶的过程中,受螺旋桨的空化作用影 响,会在其尾部形成一条动态变化的气泡带,即舰船 尾流^[1-2]。尾流带所在区域与周围水体环境在激光 后向散射特性上存在显著差异,放置探测器于水面 下方3~5m处,向水面持续发射激光,通过观察激光 回波信号变化情况,可分辨是否存在舰船尾流,即光 尾流探测方法^[3-4]。通过分析舰船尾流激光后向散 射特性,可分辨舰船航向、航速、以及舰船吨位等关键 信息,大大提升水下平台制导能力与制导范围^[5-6]。

针对舰船尾流激光后向散射特性,许多学者开 展了深入的研究。如周宁等^[7]针对水中气泡多次 散射对后向散射光强以及偏振度的影响规律问题, 基于矢量 Monte Carlo 方法,采用欧拉矢量法对光子 在水中气泡后向散射偏振态进行跟踪,对比分析了 线偏振、圆偏振激光入射情况下,不同散射次数回波 信号在强度和偏振度特性上的差异性,验证了欧拉 矢量法用于光尾流探测仿真领域的可行性。余扬 等^[8]基于激光水下探测原理,借助雪崩二级管自主 研发了激光探测舰船尾流样机,验证了样机的探测 性能,证明了光尾流探测方法的可行性。宗思光^[9] 等提出了针对舰船尾流激光探测系统的跟踪方法, 分阶段描述了整个跟踪与搜索的过程,并在湖泊条 件下开展了典型船只的尾流探测实验,为舰船尾流 激光探测工程实践提供了支撑。

但水下环境十分复杂,受水中生物与可见光干 扰的影响,在实际探测过程中,尾流激光后向散射回 波信号变化剧烈^[10]。传统探测方法是利用 APD 雪 崩二级管采集尾流激光回波信号。该方法探测灵敏 度高,但探测视场小,信号可变动态范围小,无法在 同一参数下探测远场尾流微弱气泡目标与近场尾流 强反射大气泡目标^[11]。本文基于激光主动照明探 测模式,结合工业相机与高重频激光器以及高精度 同步触发模块,构建了一套基于激光主动照明的舰 船尾流图像探测系统,可实现对舰船尾流大视场、大 动态范围有效探测。利用蒙特卡洛方法构建了舰船 尾流激光后向散射探测仿真平台,验证了本系统的 可行性;结合工业相机与高重频激光器试制了图像 探测系统样机,开展了室内实验室水池条件下舰船 尾流气泡探测测试验证,结合测试结果统计分析了 不同系统参数对探测性能的影响;开展了模拟可见 光干扰实验,验证了本系统的抗可见光干扰能力。 本系统具备对舰船尾流有效探测能力,并具备较强 的环境适应性,可为舰船尾流激光探测识别工程实 践提供支撑。

2 工作原理

水下光电成像主要是激光光束在水体传输的过 程中,水中物质会对光束的传输产生影响,主要表现 为散射与吸收效应^[12]。其中水体对光束的散射作用 一般符合瑞利散射的特点,气泡对光束的作用符合 Mie 散射的特点^[13]。为进一步研究激光在水下的传 输特性,本文借助蒙特卡洛方法构建了激光水下传输 仿真模型^[14],对比了当光路上出现直径为 70 μm 的 气泡时对激光水下传输的影响。如图 1 所示。

通过仿真结果发现,当激光光束穿过气泡时,对 应区域的光子数会有明显增加,水体背景信号与经 过气泡的信号有所差异。为进一步探究该差异性在 图像上的表现,借助激光器与工业相机构建了一套 成像系统进行数据采集。当曝光时间为12500 μs, 激光光强 9000 mA,激光器重频 1 kHz,探测距离 2.2 m 时,采集到没有气泡时的水体背景图像如图 2 (a)所示,图中激光束所在的区域会形成一条明显 的光柱,其周围也会存在一定的散射光,较其他未被 激光束照射到的区域会有明显的灰度值差异,中间 的汇聚点则是焦点处,锥形图像的形成主要是镜头 自身导致的图像畸变。

图 2 激光在水体中传输图像 Fig. 2 Laser transmits images in a body of water

而当光柱的上方存在气泡时,如图 2(b) 所示, 会在激光光柱上产生明显的亮点,可以依稀看出气 泡的形态。

通过分析图像中灰度最值的变化,输出灰度值 变化图,如图3所示。当仅有激光光束时,灰度最值 在50上下浮动,而当光路上出现直径为70μm目 标气泡时,灰度最值会有一个明显的提升,可达到 200多,灰度最值的上下跳动是由于焦点处并非一 直存在目标气泡所导致的;当光路上的出现直径为 150μm的干扰气泡时,图像瞬间过曝,灰度最值达 到255。通过分析上述灰度最值的变化,说明该方 法在系统参数调节至合适的区间时,可以实现对目 标气泡的探测,并且当出现其他物质干扰时,与目标 物也会存在显著差别,可以区分出探测到的是目标 还是干扰,验证了该探测方法的可行性。

3 图像探测系统样机设计

本文所构建的激光主动照明图像探测系统主要 由微弱目标主动激光照明成像探测模组、选通控制 模块、图像处理模块三部分组成,如图4为探测系统 结构图:

Fig. 4 Structure diagram of the detection system

3.1 微弱目标主动激光照明成像探测模组

本系统探测距离设置在 5 m 以内,选用了方向 性好,能量高,受水体衰减相对较小的 532 nm 波段 的高重频蓝绿脉冲激光器作为光源,激光器重频 0.5~50 k 可调,激光能量150 μJ,可稳定长时间工 作。接收端选用最大帧率可达814 f·s⁻¹,最短曝 光时间可达40 μs的工业相机,与激光器离轴放置, 通过定焦成像的模式尽可能降低近处水体后向散射 对成像质量的影响。

3.2 选通控制模块

水下成像过程中,主要干扰光来源于水体后向 散射光的干扰,本系统通过单片机实现了对激光器 与相机的高精度同步触发,激光发出的同时相机开 始拍摄,达到相机最短曝光时间后成像结束,并且采 用突发脉冲模式,在相机最短曝光时间内,使激光照 明时间尽量长。

3.3 图像处理模块设计

图像处理模块主要是处理经由网口传输至计算 机中的图像数据,借助 OpenCV 开源图像处理库,对 比背景图像与目标图像的灰度最大值,输出图像灰 度最值变化图,判断目标区域是否存在尾流气泡。

4 实验验证与结果分析

为研究探测系统参数与探测信噪比之间的变化 规律,验证该样机性能与抗干扰能力,在室内大水池 条件下开展了模拟探测舰船尾流实验。分别从各项 系统参数对探测性能的影响与可见光干扰对探测性 能的影响两个角度进行了验证。

将探测系统放置于18 m×1 m×1 m的大水池 一端的光学窗口处,使用气泡发生装置生成气泡来 模拟舰船尾流。气泡发生装置使用钼丝电解模式与 气泵生成气泡,其中钼丝板中选用直径180 μm的 钼丝,通电电流恒定为0.35 A,可产生直径50 ~ 70 μm的小气泡,用来模拟尾流带中可能存在的气 泡。将气泡发生装置放置于水池中指定距离处。实 验系统图如图5 所示。

图 5 实验系统图 Fig. 5 Experimental system diagram

实验流程如下:探测系统通电,待可拍摄到目标 区域激光光柱清晰图像后,采集一定帧数背景图像; 然后将气泡发生装置通电,开始生成气泡,待光柱中 出现明显气泡时,采集目标图像;通过上位机将目标 与背景图像分别进行处理后生成灰度值变化波形 图,统计背景与目标灰度值峰值的平均值,并计算信 噪比,计算式如下所示:

$$SNR = \frac{\text{average}(object)}{\text{average}(back)}$$
(1)

3.1 各项系统参数对探测性能的影响

实验过程中,对各项参数进行了控制变量研究, 探索不同系统参数、环境参数、目标参数对探测性能 的影响,表1是实验中改变的变量及区间。

表 1	实验变量及变化范围(方式))
12 1	<u>大迎义星从义儿池田() 八</u>	/

Tab. 1 Experimental variables and variation range(method)

	系统参数	变化范围(方式)
	激光器光强/mA	6000,7000,8000,9000,10000
	激光器重频/kHz	1,3,5,7,9
	相机曝光时间/µs	20000,12500,5000
	气泡层距离/m	2.2,3.2
	可见光干扰	大功率 LED 白灯
	目标参数	钼丝电解气泡(70 μm)

首先从单一参数在不同距离上对目标气泡探测信噪比的影响进行了分析,其次对指定距离上的最优系统参数开展了研究;在上述参数研究的基础上,开展了大功率 LED 白灯干扰条件下的系统探测性能的研究,并借助同步脉冲电路有效抵御可见光干扰,为后续的外场实验与工程研究提供了有效支撑。

4.1.1 激光器光强对探测信噪比的影响

图 6 所示为当相机曝光时间为 12500 µs,激光 器重频为 5 kHz 时,探测信噪比与激光器光强之间 的关系。探测直径为 70 µm 的小气泡过程中,当距 离较远时,探测信噪比随光强的增加呈现线性上升 的趋势;而当距离较近时,随光强的增加呈现线性上升 后下降的趋势,光强达到 8000 mA 以后探测信噪比 下降主要是因为光强太大导致图像过曝,目标区域 灰度最值保持 255 不变,背景最值逐渐增加,信噪比 便随之下降了。

4.1.2 激光器重频对探测信噪比的影响

图 7 展示当相机曝光时间为 12500 μs,激光器 光强为 6000 mA 时,探测信噪比与激光器重频的关 系。如图可发现,随着重频的增加,信噪比在不同距 离上均呈现先上升后下降的趋势,主要是因为初始 重频增加时,在固定曝光时间内激光照明持续时长 会有所增加,目标灰度值;可是当重频增加到一定程 度时,激光器光强会因为重频增加有所下降,导致后 半段信噪比反而降低。

图 8 展示当激光器重频为 5 kHz,激光器光强为 6000 mA 时,探测信噪比与相机曝光时间之间的关 系。随曝光时间的增加,信噪比在 2.2 m 上均呈现 一个上升的趋势,在 3.2 m 上呈现先上升后下降的 趋势。主要由于气泡的灰度值峰值随着曝光时间增 加会不断变大,远离背景值,探测信噪比随之逐渐 增加。

图 8 曝光时间变化对探测性能的影响

Fig. 8 Effect of exposure time change on detection performance

通过将表1中所列变量均实验后,统计总结了 在不同距离上,本探测系统的最佳系统参数,如表2 所示。

表2 不同距离上最佳系统参数

Tab. 2 Optimal system parameters at

different distances

气泡尺寸/ μm	距离/ m	系统参数	信噪比
70	2.2	12500 µs 9000 mA 1 kHz	3.48
70	3.2	5000 μs. 10000 mA. 5 kHz	2. 57

通过分析表 2 与上述变化规律发现,在探测过 程中,对探测性能影响比较大的参数是相机曝光时 间与激光器光强。为提升探测近处目标的性能,可 适当降低光强,延长曝光时间,以降低水体后向散射 对图像背景信号的影响,从而提升探测信噪比;在测 远处目标时,尽量使用短曝光时间,增大激光器光 强,增大目标区域的灰度最值与背景灰度最值的差 值,以提升探测信噪比。想要获得最佳的探测性能, 最主要是需要在保证目标图像不过曝的情况下,尽 可能的降低背景图像的灰度最值。

4.2 可见光干扰对探测信噪比的影响

在水下成像过程中,主要干扰来源是水体后向 散射与环境可见光。其中,目标反射激光仅存在于 脉冲激光器出光的时间段,而其他干扰光则存在于 整个曝光时间内。基于上述现象,可通过在不减少 目标反射激光存在时间的情况下,降低干扰光存在 时间,以提升探测信噪比。本探测系统利用选通模 块设计了同步触发电路,可利用脉冲外触发,使激光 器出光与相机在时域上对齐,在保证激光器出光时 间完整存在于相机曝光时间中后,尽量降低曝光时 间,提升探测信噪比。

为验证该方法的可行性,本文借助大功率 LED 白光模拟了太阳光干扰,从探测器对向光学窗口处 直射探测器,距离为18 m,其效果如图9 所示。

图9 大功率 LED 白光干扰时场景 Fig.9 High-power LED white light interference scene 在未添加同步触发电路前,相机成像效果如图 10 所示。

图 10 未添加同步触发时成像效果 Fig. 10 Imaging effect without synchronous triggering

在光源处明显过曝,且激光光束难以辨认,无法 判断目标气泡是否存在,探测信噪比极低。当开启 同步触发电路,调节相机时延与曝光时间后,在相机 曝光时间为40 μs的情况下,可探测到图像如图11 所示。

图 11 添加同步触发后图像 Fig. 11 Image after adding the sync trigger

在该图中,白光的干扰被显著降低,白光光源处 灰度值被削减至与目标区域灰度值相近,且可清晰 发现激光光束边缘信息,为后续图像处理方法的研 究提供了可能性,且验证了本系统可以应对一定程 度上的可见光干扰。

5 总 结

本文基于激光主动照明探测模式,运用结合工 业相机与高重频激光器构建了一套舰船尾流成像探 测系统,实现了针对舰船尾流气泡的大视场、大动态 范围的有效探测。利用蒙特卡洛方法构建了舰船尾 流成像探测仿真平台,验证了该方法的可行性;搭建 了基于激光主动照明的舰船尾流图像探测系统样 机,并在室内实验室水池条件下开展了大量实验,验 证了系统性能,并就实验结果分析了不同系统参数 对探测性能的影响;同时开展了可见光干扰条件下 探测性能的评估,验证了本系统同时存在较强的抗 可见光干扰能力。

图像探测模式较基于 APD 光敏电路探测模式 而言,探测视角更广,回波信号可变化范围更大,并 且图像系统丰富的二维信息,为后续实现尾流气泡 的识别提供了可能,能够进一步提升尾流探测系统 的可靠性。并且图像系统在应对环形尾流,深水炸 弹等对抗尾流制导的手段时,具有更大的可操作性, 理论上可以通过图像信息,辨认正常尾流与经人为 干扰后产生的尾流。后续的工作中,可以尝试将深 度学习方法引入尾流气泡识别中,通过对其数密度, 运动状态等特征的分析,对其进行识别与跟踪,提升 尾流制导的准确率。

参考文献:

[1] Zhou Ning, Wang Jiangan, Liang Shanyong, et al. Multipe scattering polarization characteristics of bubble based on Monte Carlo method[J]. Laser & Infrared, 2013, 43(6): 627-631. (in Chinese)
周宁, 王江安, 梁善勇, 等. 舰船尾流气泡多重散射偏

而」,主任女,案普勇,等. 脱茄尾流气泡多重散剂循振特性研究[J]. 激光与红外,2013,43(6):627-631.

- [2] Yu Yang, Wang Jiangan, Ma Zhiguo, et al. Pilot experimental study of a prototype optical wake detector[J]. Laser & Infrared, 2009, 39(2):137-140. (in Chinese) 余扬, 王江安, 马治国, 等. 激光探测舰船尾流气泡样 机初步实验研究[J]. 激光与红外, 2009, 39(2): 137-140.
- [3] Zong Siguang, Zhang Xin, Cao Jing. Method and experiment of laser detection and tracking of ship wake. [J]. Infrared and Laser Engineering, 2023, 52(3):205 216. (in Chinese)
 宗思光,张鑫,曹静,等. 舰船尾流激光探测跟踪方法
 与试验[J]. 红外与激光工程,2023,52(3):205 216.
- [4] Shi Shengwei, Jiang Xingzhou, Wang Jiangan, et al. The characteristic study of pulsed laser light back-scattering of the simulated wake bubbles[J]. Journal of Optoelectronics Laser, 2007, 150(12):1508-1512. (in Chinese)
 石晟玮,蒋兴舟,王江安,等. 舰船尾流模拟气泡的脉冲激光后向散射特性研究[J]. 光电子. 激光, 2007,

150(12):1508-1512.

- [5] Lü Wenlei, Zhang Xu, Liu Ke. Design and experimental study on a range-gated underwater laser imaging[J]. System. Journal of Ordnance Equipment Engineering, 2019, 40(8):198-202. (in Chinese)
 吕文磊,张旭,刘可.一种距离选通水下激光成像系统 设计与实验研究[J]. 兵器装备工程学报, 2019, 40 (8):198-202.
- [6] Yang Xu, Rang Yue, Zhou Wei, et al. Full color single pixel end oscopic imaging system[J]. Infrared and Laser Engineering, 2023, 10:185 - 292. (in Chinese) 杨旭,冉悦,周伟,等. 全彩单像素内窥成像系统[J/ OL]. 红外与激光工程, 2023, 10:185 - 292.
- [7] Wang Yunlong, Zhang Xin, Jin Chaoguang, et al. Design and development of ship simulation wake test system based on illumination in towing tank [J]. Research and Exploration in Laboratory, 2022, 41(7):84-88. (in Chinese)

王运龙,张欣,金朝光,等.基于照度的舰船尾流水池 模拟测试系统设计与开发[J].实验室研究与探索, 2022,41(7):84-88.

- [8] Jin Liangan, Yan Xuefei, Wang Yong, et al. Study on bubble coalescence in ship wake based on large eddy simulation method and modified bubble equilibrium equation
 [J]. Science, Technology and Engineering, 2014, 14 (24):141-145. (in Chinese)
 金良安, 闫雪飞, 王涌, 等. 基于大涡模拟方法和修正的气泡平衡方程的舰船尾流气泡聚并研究[J]. 科学技术与工程,2014,14(24):141-145.
- [9] Chen P, Li X N, Zhang G. Rapid detection to long ship wake in synthetic aperture radar satellite imagery [J]. Journal of Oceanology and Limnology, 2019, 37 (5): 1523 - 1532.
- [10] Li Hai, Jia Hongguang, Chen Zaibin. Analysis and experiment on aerodynamic characteristics of coaxial rotor system[J]. Optics and Precision Engineering, 2021, 29(9): 2140 2148. (in Chinese)
 李海, 贾宏光, 陈在斌. 共轴双旋翼系统的气动特性分析及试验[J]. 光学 精密工程, 2021, 29(9): 2140 2148.
- [11] Zhang Qun, Wang Yinmin. Multi bubble model and finite element analysis in wake[J]. Torpedo Technology, 2014, 22(4):316-320. (in Chinese)
 张群,王英民.尾流中多气泡模型及有限元分析[J]. 鱼雷技术, 2014, 22(4):316-320.

- [12] Zhang Yinbo, Li Sining, Jiang Peng, et al. PCA feature extraction and elastic BP neural network for underwater bubble recognition[J]. Infrared and Laser Engineering, 2021, 50(6):209-215(in Chinese)
 张银波,李思宁,姜鹏,等. PCA 特征提取和弹性 BP 神经网络的水下气泡识别[J]. 红外与激光工程, 2021, 50(6):209-215.
- [13] Gao Jiang, Zhang Jingyuan, Yang Li. Research status of ship bubble wake characteristics [J]. Ship Science and Technology, 2008(4):27-32. (in Chinese) 高江,张静远,杨力. 舰船气泡尾流特性研究现状[J]. 舰船科学技术,2008(4):27-32.
- [14] Tian Hengdou, Jin Liangan, Wang Yong, et al. Study on bubble distribution in ship wake considering single bubble motion characteristics [J]. Acta Armamentarii, 2011, 32

(9):1126-1130. (in Chinese)

田恒斗,金良安,王涌,等.考虑单气泡运动特性的舰 船尾流气泡分布研究[J]. 兵工学报,2011,32(9): 1126-1130.

- [15] Zhang X X, Wu Z S, Su X. Influence of breaking waves and wake bubbles on surface-ship wake scattering at low grazing angles[J]. Chinese Physics Letters, 2018, 35(7): 32-35.
- [16] Guo C Y, Wu T C, Zhang Q, et al. Numerical simulation and experimental research on wake field of ships under off-design conditions [J]. China Ocean Engineering, 2016,30(5):821-834.
- [17] Wang B L, Guo X Y, He C. Numerical simulations of wake signatures around high-speed ships [J]. Journal of Hydrodynamics, 2014, 26(6):986-989.