文章编号:1001-5078(2024)06-0935-08

· 红外技术及应用 ·

非色散红外 CO2 传感器温度补偿研究

吴文杰

(商丘职业技术学院,河南 商丘 476000)

摘 要:为了解决非色散红外 CO₂ 传感器在测量过程中易受温度影响的问题,提出双半椭球 形双通道气体吸收腔室和广义高斯径向基函数神经网络补偿温度的新方法。首先双半椭球形 双通道气体吸收腔室的半椭球形长轴右侧焦点与右半椭球形长轴左侧焦点重合,红外光源位 于左、右半椭球形长轴的焦点重合处,检测器位于半椭球形长轴的另外一个焦点处,该结构能 够使光线被气体充分接收,减小了光线传播过程中的损耗。接着差分计算单波长双通道热释 电探测器输出电压获得 CO₂ 气体浓度。最后分析广义高斯径向基函数神经网络形状参数与 辅助形状参数对提高逼近效果的影响。实验显示在双半椭球形双通道气体吸收腔室结构中, 长轴长度为4 cm 和短轴长度为3 cm 则 CO₂ 气体吸收率达到最大值。常温 25 ℃时,CO₂ 不同 浓度测量误差变化不大,绝对误差波动范围在 0.004 % ~0.006 % 之间,相对误差波动范围在 0.067 % ~0.100 % 之间。CO₂ 浓度 2 % 时,不同温度测量误差变化较大,绝对误差波动范围在 0.001 % ~0.024 % 之间,相对误差波动范围在 0.017 % ~0.400 % 之间,测量浓度为 2 % 的 CO₂ 气体传感器响应时间的 6 次平均值为 27.46 s,具有较快的响应时间。 关键词:双半椭球形;双通道;焦点;非色散红外;温度补偿

中图分类号:TN21;TP212.1⁺4 文献标识码:A **DOI**:10.3969/j.issn.1001-5078.2024.06.015

Research on temperature compensation method of non-dispersive infrared CO₂ sensor

WU Wen-jie

(Shangqiu Polytechnic, Shangqiu 476000, China)

Abstract: Aiming at the problem of non-dispersive infrared CO_2 sensor are susceptible to temperature, a new method of double semi ellipsoidal and double channel gas absorption chamber and generalized gaussian radial basis function neural network for temperature compensation is proposed in this paper. Firstly, the right focus of the semi ellipsoidal long axis coincides with the left focus of the right semi ellipsoidal long axis in the double semi ellipsoidal and double channel gas absorption chamber structure, the infrared light source is located at the overlap of the left and right semi ellipsoidal long axes, and the detector is located at another focus of the semi ellipsoidal long axis, which enables the light to be received by the gas sufficiently, and reduces the loss of light propagation. Secondly, the differential calculation of the output voltage of a single wavelength double channel pyroelectric detector is used to obtain the concentration of CO_2 gas. Finally, the influence of shape parameters and auxiliary shape parameters of the generalized gaussian radial basis function neural network on improving approximation performance is analyzed. The experiment shows that CO_2 gas absorption rate reaches its maximum value at a long axis length of 4 cm and a short axis length of 3 cm in the double semi ellipsoidal and double channel gas absorption chamber structure. At room temperature 250 C, the measurement error of different concentrations of CO_2 is not much changed, with an absolute error fluctuation range of 0.004 % ~ 0.006 % and the relative error fluctuation range is between 0.067 % ~ 0.100 %. When the CO₂ concentration is 2 %,

作者简介:吴文杰(1987 -),男,硕士,讲师,研究方向为电气工程及其自动化。E-mail:wwj19877@126.com 收稿日期:2023-10-03

基金项目:河南省高等学校重点科研项目(No.23B510014)资助。

the measurement error varies greatly at different temperatures, with an absolute error fluctuation range of 0.001 % ~ 0.024 % and the relative error fluctuation range is between 0.017 % ~0.400 %. The average response time of a CO_2 gas sensor with a measurement concentration of 2 % for six times is 27.46 seconds, indicating fast response time. **Keywords:** double semi ellipsoidal; double channel; focus; non-dispersive infrared; temperature compensation

1 引 言

CO₂ 测量在许多领域必不可少,包括工业控制 系统以及环境监测应用,CO₂ 能够吸收红外光谱,并 且吸收区域明显^[1],使用红外二极管作为光源通常 可避免与其他气体种类的交叉敏感性,可实现高精 度检测。

目前非色散红外(Non-Dispersive Infrared, NDIR) CO2 气体传感器相比固体电解质气体传感器使用范 围较广^[2],固体电解质气体传感器主要是需要暴露 在环境中,同时气体选择性较差;NDIR 采用光谱吸 收原理,具有高精度和低功耗特点,NDIR 通常使用 热释电探测器,在非接触式测量过程中受外界影响, 如温度、压强、湿度等等,特别是温度变化时,若没有 温度补偿引起测量信号漂移,那么将出现严重的测 量误差^[3]。气体吸收腔室设计在测量中非常重要, 反射型结构内置反射镜,红外光经反射穿过被测气 体后被探测器接收。直射型结构没有气室内壁反射 损耗的能量,存在信号衰减严重,探测灵敏度低缺 陷。Hartwig 等采用多重反射型长方体^[4],但是没有 考虑光源的发散性,导致光源能量产生损失,腔室采 用单凹面镜聚光,因此探测器接收时只有一个光斑, 光能损耗大。Yoo 等提出一种类椭圆形,内表面具 有镜面反射镜,可多次进行反射^[5],腔室输入光要 求平行光,因此不易批量生产,不具有普遍性。Sklorz 等采用圆锥形^[6],结构简单,设计容易,但最好 情况下光能传输效率仅为4.2%,难以应用推广。 Yi设计双椭圆结构,增加红外光程也提高光能利用 率^[7],给出温度与输出电压之间的一般方程。以上 气体吸收腔室主要通过多次实验来确定,灵敏度有 待提高,经验成分较高,不易小型化。在测量过程中 由于 CO, 浓度容易受到温度影响, 需要进行温度补 偿^[8]。最小二乘方法(Least Square, LS) 拟合不同 CO,浓度下传感器电压与温度变化^[9],但是存在多 项式系数矩阵为病态的问题。神经网络算法(Neural Network,NN),气体测量误差补偿中仅能够搜索 到误差曲面某一低谷^[10],无法获得其他较小误差。 径向基函数神经网络(Radial Basis Function Neural Network, RBFNN)属于前向神经网络类型, 能逼近任 意的非线性函数^[11], 在温度补偿过程中需要计算的 参数较多。

本文设计双半椭球形双通道气体吸收腔室, 红外光源位于左半椭球形长轴右侧焦点与右半椭 球形长轴左侧焦点重合处,双半椭球结构能够使 光线被气体充分接收,减小了光线传播过程中的 损耗;通过广义高斯径向基函数神经网络对温度 补偿,建立了输入值、输出值之间的关系模型,该 传感器能够在不同温度与不同浓度的环境下进行 精确测量。

2 双半椭球形双通道气体吸收腔室设计

红外光源发射出1~20 µm 的红外光,由于不 同的气体分子对光具有不同的吸收峰,因此经过 一定长度的气体吸收腔室吸收红外光,再经过一 个 4.26 μm 波长的窄带滤光片后,由红外探测器 监测透过 4.26 µm 波长红外光的强度,以此获得 CO2 气体的浓度。气体对红外光谱的吸收遵循朗 伯-比尔定律^[12-13],但在实际的测试中,如果直 接使用该定律进行计算,由于环境温度对其吸收 系数影响较大,所得出的 CO,浓度将不准确,理想 气体会因温度变化而改变其浓度,随着外界温度 的升高,CO,分子的活性会增强,从而增强红外吸 收程度,影响测量结果;温度变化会导致红外 LED 发射波长的变化,影响发射的强度和效率。如果 腔室长度值越大,导致光学气体吸收腔室内壁吸 收过多的红外辐射能量,则待测 CO2 气体对辐射 吸收就越少;但是腔室长度值越小,红外光在光学 气体吸收腔室内光程将缩短,待测 CO2 气体不能 充分吸收红外能量, 使测量结果精度变低, 因此光 学气体吸收腔室不宜过长。优化光学气体吸收腔 室设计在一定程度上可减少外界温度对测试过程 的影响,目前市场上的非色散红外 CO2 传感器使 用圆柱腔体,里面设置测量通道和输出通道,通过 对比分析不同通道输出值即可获得 CO2 浓度,但 是圆柱腔体无法使红外光源有效到达检测器,为 了减少红外辐射的损耗,设计出双半椭球形双通 道气体吸收腔室,根据从椭圆一个焦点所发出的 任何一束光线,通过椭圆形弧形反射,将这些光线 集中到另一个焦点处,因此其结构如图1所示。

图1 双半椭球形双通道气体吸收腔室

Fig. 1 Double semi ellipsoidal and double channel gas absorption chamber

图中,每个半椭球形结构相同,各有2个气孔 Pore、1个红外检测器 Detector 以及1个滤波片 Filter, Filterl 采用中心透过波长 4.26 µm 的窄带滤光 片,Filter2 采用中心透过波长 4.0 µm 的窄带滤光 片,一个是进气孔 Pore11、Pore21,另外是一个出气 孔 Pore12、Pore22,进气孔 Pore11、出气孔 Pore12 构 成测量通道,进气孔 Pore21、出气孔 Pore22 构成参 考通道,滤波片 Filter1 置于检测器 Detector1 前面, 滤波片 Filter2 置于检测器 Detector2 前面, 左半椭球 形长轴右侧焦点与右半椭球形长轴左侧焦点重合, 红外 LED 光源位于左、右半椭球形长轴的焦点重合 处,隔板 Partition 位于椭球长轴焦点重合处到边界 之间,双椭球形被 Partition 隔离,中间隔板把红外 LED 光源发出的光平均隔开,光进入不同的气体吸 收腔室,即一个焦点发射的光线经过椭球壁反射后 必定经过另一个焦点, 检测器 Detector 位于半椭球 形长轴的另外一个焦点处,这样红外 LED 光源所发 出的光经反射在不同的气体吸收腔室被接收,椭球 形内壁使用镀金处理提高反射效果。双半椭球形双 通道结构能够使光线被气体充分接收,减小了光线 传播过程中的损耗,使得红外 LED 光源发出的光尽 可能多的到达检测器。双半椭球形双通道气体吸收 腔室在使用过程中使用差分计算,在测试过程中,由 于滤波片 Filter1 和滤波片 Filter2 获得不同波长,最 终热释电传感器输出电压信号,因此双通道的测量 通道输出光强 $I(\lambda_1)$ 和参考通道输出光强 $I(\lambda_2)$ 分 别为:

$$\begin{cases} I(\lambda_1) = I_0(\lambda_1) \times e^{-k(\lambda_1)c_1l_1+\beta_1+\delta_1} \\ I(\lambda_2) = I_0(\lambda_2) \times e^{-k(\lambda_2)c_2l_2+\beta_2+\delta_2} \end{cases}$$
(1)

式中, $I_0(\lambda_1)$ 、 $I_0(\lambda_2)$ 为入射光强; $I(\lambda_1)$ 、 $I(\lambda_2)$ 为 出射光强; λ_1 为 CO₂ 气体吸收峰波长; λ_2 为参考波 长; $k(\lambda_1)$ 为测量通道待测气体吸收系数; $k(\lambda_2)$ 为参考通道待测气体吸收系数; l_1 、 l_2 为光源与检测 器距离的等效光学路径长度; c_1 、 c_2 为待测气体浓 度; β_1 、 β_2 为与波长相关的干扰因子; δ_1 、 δ_2 为与波 长无关的干扰因子。

两个通道在同一环境下, $l_1 = l_2 = l, c_1 = c_2 = c, I_0(\lambda_1) \approx I_0(\lambda_2), \beta_1 = \beta_2, \delta_1 = \delta_2$, 因此 CO₂ 浓度 c:

$$c = \frac{1}{[k(\lambda_1) - k(\lambda_2)]l} \operatorname{In} \frac{I(\lambda_2)}{I(\lambda_1)}$$
(2)

单波长双通道热释电探测器输出电压与光强成 正比^[14],即 $U \propto I$,则推导得出:

$$c = \frac{1}{[k(\lambda_1) - k(\lambda_2)]l} \ln \frac{U(\lambda_2)}{U(\lambda_1)}$$
(3)

式中, U1、U2 为测量通道和参考通道的输出电压值。

这样差分计算气体浓度只与 k(λ₁)、k(λ₂)、l 有 关,减少了干扰,但是由于 k(λ₁)、k(λ₂)值会随着 温度的改变发生变化,同时温度也影响红外光源和 红外探测器,对测量精度造成影响,因此 c 值需要 补偿。

3 广义高斯径向基函数神经网络

径向基函数神经网络(Radial Basis Function Neural Network, RBFNN) 对非线性连续函数具有较 好的逼近能力,网络结构简单,训练速度快,RBFNN 由输入层、隐含层、输出层组成,能够对输入信号做 出局部响应, RBFNN 要求隐含层的神经元数和样本 数相同[15],隐含层的径向基函数是非负非线性函 数,函数值要求自变量偏离中心点位置而呈快速衰 减趋势,但是对标准高斯径向基函数对形状参数存 在依赖性^[16]。广义高斯径向基函数神经网络(Generalized Gaussian Radial Basis Function Neural Network,GGRBFNN)的输入层的节点数等于输入向量 的维数,隐含层的节点数小于输入训练样本的个数, 但多于输入向量的维数,结构比较简单,计算参数 少。广义高斯径向基函数(Generalized Gaussian Radial Basis Function, GGRBF) 是在高斯径向基函数 (Gaussian Radial Basis Function, GRBF) 基础设计的 函数,稳定性和精确性较好,能够适应较小的形状参 数值,GGRBF 为:

$$\begin{cases} \psi(r,k_1,k_2) = \psi(r,k_1)\exp(\phi(r,k_2) - 1) \\ \phi(r,k_1) = \exp(-(rk_1)^2) \end{cases}$$

(4)

式中, $\phi(r,k_1)$ 为标准高斯径向基函数,形状参数为 k_1 ; k_2 为辅助的形状参数,当 $k_2 = 0$,则 $\psi(r,k_1,k_2)$ 为高斯函数; $r = \sqrt{(x - x_i)^2 + (x - y_i)^2 + k_2^2}$, (x_i, y_i) 是定义域内的点。

GGRBF 与 GRBF 比较如图 2 所示。可以看出, GRBF 的形状参数 k_1 越小则径向基函数越平坦,逼 近效果就越差,GGRBF 的辅助形状参数 k_2 有助于 提高逼近效果。

$$y_{j} = \sum_{i=1}^{N} w_{ij} \psi(\|X_{n} - X_{i}\|)$$
(5)

式中, X_n 为输入向量, $\psi(||X_n - X_i||)$ 为激励函数, 即 广义高斯径向基函数; X_i 该径向基函数的对称中心, w_{ij} 为隐含层第 i 个节点到输出层第 j 个节点的权值。 误差函数 E 来衡量预测误差:

$$e_{j} = \frac{1}{2} \sum_{j=1}^{J} (y'_{j} - y_{j})^{2}$$
(6)

若 E 达到既定的训练目标,则训练结束。

4 实验结果及数据分析

实验时,在标准大气压下分别向双半椭球形气体吸收腔室中通入流量为(1.5±0.2)L/min 的6种不同浓度的 CO₂ 气体,通过实验测量输出电压值来获得 CO₂ 气体浓度,PerkinElmer 公司的 IRL715 作为红外光的单光源,Excelita 公司的 PYS3228 作为探测器,首次设定温度为5℃,随后逐渐进行升温,温度每增加5℃等待保持恒温 30 min,当气体受热均匀确保热电偶示数不再变化再进行测量。

4.1 长轴、短轴长度与吸收率分析

位于椭球形长轴焦点处红外光源发出的光,经 椭球形壁反射将到达长轴另外一个焦点,最终被焦 点的探测器获得,椭球形不同的长轴、短轴长度影响 CO₂ 气体吸收率,较短的长轴、短轴长度使 CO₂ 气 体不能被充分吸收,测量值较高,较长的长轴、短轴 长度使 CO₂ 气体衰减增加,测量值较低,因此合适 的长轴、短轴长度有利于测量,长轴、短轴长度与吸 收率通过 ANSYS FLUENT 软件分析如图 3 所示。

Fig. 3 Analysis of long and short axis lengths and absorption rates

可以看出,随着长轴、短轴长度的增加,CO₂ 气体吸收率也随着增加,但是到达某个最大值点后, CO₂ 气体吸收率也逐渐减少,在双半椭球形双通道 气体吸收腔室结构中,长轴长度为4 cm 和短轴长度 为3 cm 处 CO₂ 气体吸收率达到最大值。

4.2 温度补偿分析

混合气体通过 CO₂ 与 N₂ 配置产生,其浓度通 过输入量进行控制,从恒温箱在5 ℃ ~50 ℃按步长 5 ℃取值,即测量温度节点共 10 个,分别为:5[°] C、 10 ℃、15 ℃、20 ℃、25 ℃、30 ℃、35 ℃、40 ℃、 45 ℃、50 ℃,每个温度节点混合气体 CO₂ 浓度分别 为 0.5%、1%、2%、3%、4.05%、5.05%,待气体 均匀后,测量计算传感器相应的输出电压比,电压值 获得测量 10次,则共获得 600组数据,按训练、测试 划分比例为 8:2,GGRBFNN采用三层结构,输入层 为 2个节点,隐藏层的节点 15个,输出层节点为 1 个,GGRBFNN参数为: $k_1 = 1, k_2 = 4$,学习精度为 10⁻⁴,训练最小误差设为 10⁻⁶,训练次数最多为 1000次。在测试过程中,使用两组数据进行温度补 偿对比实验,一组是没有使用温度补偿算法进行测 量,一组是使用温度补偿算法进行测量,通过蒙特卡 罗方法对每个 CO₂浓度的 10个温度节点记录 6次 测量值,然后取平均值作为该温度节点的测量值,温 度补偿前后测量 CO₂浓度变化对比如图 4 所示。

and after compensation

从图中测量结果可以看出,随着外界温度的 升高,各个温度值的二氧化碳测量值呈现增加趋势,主要原因是温度升高影响 CO_2 的吸收率,进而 影响检测器测量红外峰峰值大小,当温度越升高, 峰峰值将出现下降趋势,因此未补偿的情况下测 量 CO_2 浓度值将出现偏大情况,温度越高其测量 值越偏离真实值。通过本文方法进行温度补偿, 在5 $C \sim 50 C$ 范围内,测量值较接近离真实值,并 且不随温度变化而出现较大波动,温度补偿结果 的稳定性较好。

检测气体满量程值为6%,常温25℃时温度补

偿后,CO₂不同浓度测量误差如表1所示;CO₂浓度 2%时温度补偿后,不同温度的测量误差如表 2 所示。

表1 不同浓度测量误差

Tab. 1 Measurement error of different concentrations

standard concentration/ %	detection concentration/ %	absolute error/ %	relative error/ %
0.5	0. 505	0.005	0. 083
1	1.004	0.004	0.067
2	2.006	0.005	0. 083
3	3.005	0.005	0. 083
4.05	4.055	0.005	0. 083
5.05	5.056	0.006	0.100

表2 不同温度测量误差

Tal	o. 2	N	leasurement	error	of	different	tem	peratures
-----	------	---	-------------	------------------------	----	-----------	-----	-----------

temperature/°C	detection concentration/ %	absolute error/ %	relative error/ %
5	2.001	0.001	0.017
10	2.002	0.002	0. 033
15	2.004	0.004	0.067
20	2.005	0.005	0. 083
25	2.006	0.006	0. 100
30	2.009	0.009	0. 150
35	2.011	0.011	0. 183
40	2.014	0.014	0. 233
45	2.018	0.018	0. 300
50	2. 024	0.024	0.400

从表1、表2测量误差结果可以看出,常温25 ℃时,CO₂不同浓度测量误差变化不大,绝对误差波动范围在0.004 % ~0.006 %之间,相对误差波动范围在0.067 % ~0.100 %之间。CO₂ 浓度 2 %时,不同温度测量误差变化较大,绝对误差波动范围在0.001 % ~0.024 %之间,相对误差波动范围在0.017 % ~0.400 %之间,随着温度增加,绝对误差、相对误差都随之增加,这是因为温度越高探测器获得的红外峰值越小,但是温度补偿后的整体绝对误差小于0.03 %,相对误差值小于0.5 %,测量精度较高,因此温度补偿效果良好。

4.3 响应时间测试

测量过程响应时间是衡量气体传感器性能重要

指标,响应时间指从开始响应到输出至稳定状态的 90 %所需要的时间,响应时间越短则越能快速信号 变化。常温 25 ℃, CO₂ 气体选择浓度 2 %进行测 试,重复记录步骤 6 次,如图 5 所示。

从图中可以看出,CO2 气体传感器测量响应时间的6次平均值为27.46 s,电化学式传感器响应时间较少,一般小于30 s,因此本文方法具有较快的响应时间。

5 总 结

本文研究了气体吸收腔室结构对非色散红外 CO₂ 传感器测量的影响,用广义高斯径向基函数神 经网络对非色散红外 CO₂ 传感器进行温度补偿模 型,实验对模型进行了分析,得出结论如下:

(1)双半椭球形双通道气体吸收腔室结构中, 随着长轴、短轴长度的增加,CO2 气体吸收率也随着 增加,到达最大值后逐渐下降,长轴长度为4 cm 和 短轴长度为3 cm 处 CO2 气体吸收率达到最大值。

(2)常温 25 ℃时,CO₂ 不同浓度进行温度补偿
后测量误差变化不大,绝对误差波动范围在
0.004 % ~ 0.006 % 之间,相对误差波动范围在
0.067 % ~ 0.100 % 之间。

(3)测量浓度为2%的CO₂气体传感器响应时间的6次平均值为27.46s,具有较快的响应时间。

参考文献:

[1] Scholz L, Perez A O, Knobelspies S, et al. MID-IR LED-

based, photoacoustic CO₂ sensor [J]. Procedia Engineering,2015,120:1233 – 1236.

- [2] Bo Tengfei, Li Yafei, Li Baolin, et al. Temperature control system of non-dispersive infrared gas detector in low temperature environment[J]. Acta Photonica Sinica, 2023, 52 (3):0352125. (in Chinese)
 薄滕飞,李亚飞,李保霖,等. 低温环境非色散红外气体检测仪温控系统[J].光子学报, 2023, 52 (3):0352125.
- Zhang Jiahong, Zhu Han, Gu Fang, et al. nti-interference design of temperature and humidity for non-dispersive infrared CO₂ gas sensor[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(7):160 - 169. (in Chinese)

张加宏,朱涵,顾芳,等.非色散红外 CO₂ 气体传感器的抗温湿度干扰设计[J].电子测量与仪器学报, 2022,36(7):160-169.

- [4] Hartwig S, Hildenbr J, Moreno M, et al. A highly sensitive IR-optical sensor for ethylene-monitoring [C]//Proceedings of SPIE-the International Society for Optical Engineering, 2005:452 - 460.
- Yoo K P, Hong H P, Lee M J, et al. Fabrication characterization and application of a micro electro mechanical system thermopile for non-dispersive infrared gas sensors
 [J]. Measurement Science & Technology, 2011, 22 (11):115206.
- [6] Sklorz A, Jan En S, Lang W. Detection limit improvement for NDIR ethylene gas detectors using passive approaches [J]. Sensors and Actuators B; Chemical, 2012, 175:246-254.
- [7] Yi S H. Temperature compensation methods of nondispersive infrared CO₂ gas sensor with dual ellipsoidal optical waveguide [J]. Sensors and Materials, 2017, 29 (3): 243-252.
- [8] Jin Dan, Liu Xiaoguang, Shi Gang, et al. Temperature compensation for infrared detection of carbon dioxide concentration [J]. Infrared Technology, 2023, 45(6):
 671-677. (in Chinese)
 刘崎,汪磊,朱向冰,等. 用于二氧化碳浓度红外检测的 温度补偿研究[J]. 红外技术,2023,45(6):671-677.
- [9] Zhou L, He Y, Zhang Q, et al. Carbon dioxide sensor module based on NDIR technology[J]. Micromachines, 2021, 12(7):845.
- [10] Lv Mingchen, Liu Juan, Sun Xing, et al. Design of infrared temperature sensor based on GA-BP neural network temperature compensation [J]. Instrument Technique and Sensor, 2019, (3):19-22. (in Chinese)

吕鸣晨,刘清惓,孙星,等. 基于 GA-BP 神经网络温度 补偿的红外温度传感器设计[J]. 仪表技术与传感器, 2019,(3):19-22.

- [11] Sheng Weian, Zhang Liquan, Huang Shuai, et al. CO₂ concentration measurement method in high temperature gas of biomass power plant based on RBF neural network [J]. Acta Metrologica Sinica, 2021, 42(1):111 116. (in Chinese) 盛伟岸,张立权,黄帅,等. 基于 RBF 神经网络的生物 质电站高温气体 CO₂ 浓度测量方法[J]. 计量学报, 2021,42(1):111-116.
- [12] Pan Fuqian, Hu Bin, Liang Xiaoyu, et al. Research on temperature compensation method of non dispersive infrared CO₂ sensor[J]. Laser & Infrared, 2023, 53(6):887 894. (in Chinese)
 潘甫钱,胡斌,梁晓瑜,等. 非色散红外 CO₂ 传感器温 度补偿方法研究[J]. 激光与红外, 2023, 53(6):

887 - 894.

- [13] Liu Can, Jin Changming, Tan Qiulin, et al. Design of non-dispersive infrared CO₂ sensor with temperature compensation[J]. Infrared and Laser Engineering, 2022, 51(3): 20210746. (in Chinese)
 刘灿, 靳长明, 谭秋林, 等. 具有温度补偿的非分光红外 CO₂ 传感器设计[J]. 红外与激光工程, 2022, 51 (3): 20210746.
- [14] Niu Pingjuan, Cheng Zheng, Tian Haitao, et al. Research on temperature compensation model of non-dispersive infrared CO₂ sensor[J]. Instrument Technique and Sensor, 2019,(8):17-20. (in Chinese)
 牛萍娟,程峥,田海涛,等. 非色散红外 CO₂ 传感器温 度补偿模型研究[J]. 仪表技术与传感器,2019,(8): 17-20.
- [15] Wang Chuan, Yin Wenqing, Yang Zhijun, et al. Temperature compensation of thermal gas flowmeter based on RBF neural networks [J]. Transducer and Microsystem Technologies, 2016, 35(12):99 – 102. (in Chinese) 王川,尹文庆,杨志军,等. RBF 神经网络热式气体流量计 温度补偿[J]. 传感器与微系统,2016,35(12):99 – 102.
- [16] Liu Ke, Zhang Ran, Cui Zhibin, et al. Research on cloud model optimization radial basis function neural network algorithm [J]. Journal of Henan University of Science & Technology:Natural Science, 2023, 44 (5):49 - 55. (in Chinese)

刘轲,张冉,崔志斌,等.云模型优化径向基函数神经 网络算法研究[J].河南科技大学学报:自然科学版, 2023,44(5):49-55.