文章编号:1001-5078(2024)08-1300-09

图像与信号处理。

基于多尺度图卷积的高光谱图像分类

温 馨',李 禄',范军芳^{1,2},胡智峰³,周 锋⁴,吴亚平¹

(1. 北京信息科技大学自动化学院,北京 100192;2. 北京信息科技大学现代测控技术教育部重点实验室,北京 100192;3. 中煤航测遥感集团有限公司,陕西 西安 710100;4. 湖北省测绘工程院,湖北 武汉 430070)

摘 要:近年来,卷积神经网络在高光谱图像分类领域取得了显著的进步,但是其只能对图像 进行规则格网运算,不能自适应的进行特征聚合。因此,本文提出了一种基于分段森林的多尺 度图卷积神经网络的高光谱图像分类方法,主要有四个步骤:首先使用主成分分析进行降维, 根据图像的空间信息构建多尺度的分段森林,建立子树之间关系;然后提出了一种基于图卷积 网络的 U-net 模型架构,通过池化和解池化建立多个尺度之间的图结构特征的转换;网络通过 图卷积神经网络进行自适应的特征聚合,并在编码器和解码器之间采用跳层连接融合了多尺 度特征;最后通过 SoftMax 进行节点的半监督分类。实验在公开的高光谱数据集上进行了验 证,均取得了较好的分类精度,表明了该方法的有效性。

关键词:高光谱图像;多尺度;分段森林;图卷积神经网络;子树

中图分类号:TP751;0433 文献标识码:A DOI:10.3969/j.issn.1001-5078.2024.08.018

Hyperspectral image classification based on multi-scale graph convolution

WEN Xin¹, LI Lu¹, FAN Jun-fang^{1,2}, HU Zhi-feng³, ZHOU Feng⁴, WU Ya-ping¹

 School of Automation, Beijing Information Science and Technology University, Beijing 100192, China;
 MOE Key Laboratory of Modern Measurement and Control Technology, Beijing Information Science and Technology University, Beijing 100192, China;

3. China Coal Aerial Surrey and Remote Sensing Group Co., Ltd., Beijing 710100, China;

4. Hubei Institute of Surveying and Mapping Engineering, Wuhan 430070, China)

Abstract: In recent years, convolutional neural networks have made remarkable progress in the field of hyperspectral image classification, but they can only perform regular grid operations on images, and cannot adaptively perform feature aggregation. Therefore, a segmented forest-based multi-scale convolutional neural network hyperspectral image classification method is proposed in this paper, which consists of four steps. Firstly, principal component analysis is used for dimensionality reduction, and a multi-scale segmented forest is constructed according to the spatial information of images to establish the relationship between the subtrees. Then, a U-net model architecture based on graph convolutional network is proposed to establish the transformation of graph structural features between multiple scales by pooling and unpooling. The network uses a graph convolutional neural network to perform adaptive feature aggregation and fuses multi-scale features by layer hopping connection between encoder and decoder. Finally, the semi-supervised classification of nodes is carried out through SoftMax. The experiment is verified on the public hyperspectral dataset, all of

基金项目:北京市属高等学校高水平科研创新团队建设支持计划项目(No. BPHR20220123);北京市自然科学基金项目(No. 4214072)资助。

作者简介:温 馨(1998-),女,硕士研究生,主要从事高光谱图像分类技术研究。E-mail:2021020365@bistu.edu.cn

通讯作者:李 禄(1981-),男,博士后,副教授,硕士研究生导师,主要从事遥感图像处理,高光谱异常检测,遥感图像融合、分类技术的研究。E-mail:20192380@ bistu. edu. cn

收稿日期:2023-09-25;修订日期:2023-11-27

which achieves good classification accuracy, demonstrating the effectiveness of the method. **Keywords:** hyperspectral image; multiscale; segmented forest; graph convolutional neural network; subtree

1 引 言

随着遥感技术的发展,高光谱图像广泛应用到 地物目标监测^[1]、医学图像^[2]、土地覆盖检测^[3]等 多个领域。高光谱图像是一个三维立体数据,不仅 包含了地物的二维空间信息,还包含了上百个波段 丰富的光谱信息。凭借其丰富的空谱信息,为精细 的地物分类提供了可能。

基于传统机器学习的方法如支持向量机^[4]、随机 森林^[5]等方法,在高光谱图像分类中取得了不错的的 成果,但仅提取浅层特征,导致分类精度有限。随着 深度学习的发展,诸如卷积神经网络(CNN)^[6]、残差 网络(Resnet)^[7]、密集连接(DenseNet)^[8]和 Transformer^[9]模型引入,明显地提升了地物分类的效果。 但是上述方法不论是卷积神经网络还是 Transformer 模型,都是以影像块(Patch)为基础,这种对形状固 定、规则为像素区域进行特征提取方式极大地限制 了网络挖掘高光谱图像信息的能力。而近年来图神 经网络(GNN)的出现,有效改善了上述问题。首先 图结构能有效组织非规则排列的高光谱数据,其次 通过图深度学习技术,可以对高光谱图像上的任意 形状区域进行建模和特征提取:最后通过节点标签 的传播机制,采用半监督的方式表示出所有节点,完 成最终的分类。考虑到遥感图像上的地物尺寸、大 小、形状各异。利用图卷积神经网络(GCN)^[10]在高 光谱图像分类中有着独特的优势。虽然图神经网络 在高光谱图像分类精度上有所提高,但计算耗时长。 在构建图结构数据方面,使用简单线性聚类算法 (SLIC)超像素分割方法,表示高光谱图像的空间特 征,能大量减少图数据的存储,但 SLIC 分割的超像 素区域大小相近,而地物目标尺度变化大,采用同一 尺度超像素分割算法是不合理的,无法提取到精细 特征。Liu^[11]等人将 CNN 和 GCN 组合到一个网络 模型中,通过 CNN 提取像素级特征,GCN 根据相邻 像素的光谱相似性和空间距离在相邻像素之间传播 信息,补充超像素特征。Ding^[12]等人通过注意力机 制关注空间目标来自适应学习图的深层上下文信息 和全局信息。上述方法都是在单一尺度上进行 GCN 特征提取,但单一尺度很难精细地描述不同尺 寸的地物信息。文献[13]利用多尺度图卷积来提 高网络的信息提取能力。虽然多尺度图卷积改进了 分类效果,但不同尺度图节点之间关系,节点如何融 合多尺度特征等问题尚需进一步研究讨论。

针对以上问题,本文提出了基于分段森林的多尺 度图卷积算法(SFMSGCN)进行高光谱图像分类。首 先通过分段森林算法进行自适应地构建多尺度图结 构;其次利用多尺度图卷积学习在不同尺度空间获取 高光谱图像的语义信息;然后通过我们提出的尺度特 征传递机制将不同尺度的特征串联起来;最后采用 U-net 的编解码结构以有标签的节点作为训练样本, 完成全图区域的高光谱图像半监督地物分类任务。

2 本文方法

本文提出的方法流程图如图1所示,主要分为 两个部分:(1)基于分段森林构建不同尺度的图结 构;(2)将构建的多尺度图结构传入 SFMSGCN 模 型,在多个不同尺度上提取不同大小区域的空谱特 征,使用光谱空间卷积来融合多尺度丰富的特征图。

图 1 基于分段森林的多尺度图卷积算法(SFMSGCN)分类方法流程图

Fig. 1 Flowchart of multi-scale graph convolution algorithm based on segment forest hyperspectral image classification

2.1 像素空间构图

首先将高光谱图像 $I \in \mathbb{R}^{m \times n \times B}$ 进行主成分分析 提取图像的第一主成分,每一个像素节点视为独立 子树,表示为 $G = \{V, E\}$,其中 V 是节点的集合。 考虑高光谱图像中,每个像素都和较近的像素点关 联性更大,与距离较远的像素点关联性较小,因此建 立每个像素节点四邻域之间的关系, E 表示每个节 点都连接四个邻居节点的边集合。整幅图像中共有 m(n-1) + n(m-1)条边,每一条边上有一个边权 重。节点 V 之间的边权值是像素值的绝对数值,可 表示为:

$$w_e = |x_i - x_i| \tag{1}$$

式中, w_e 为图的权矩阵, 权矩阵内为图上权重值, x_i, x_j 表示节点像素光谱矢量。

2.2 多尺度分段森林的构建

通过像素空间构图节点之间边的权值从小到大 排序,按照边的权值顺序合并子树。本算法^[14]在最 小生成树(MST)的子树合并条件基础上另增一个约 束条件,如式:

$$w_e \leq \min(\max(w_{T_p}) + \frac{L}{V_p}, \max(w_{T_q}) + \frac{L}{V_q})$$
(2)

其中, w_e 是子树 T_p和 T_q之间的权值; V_p和 V_q 是子 树 p和 q 中的节点数目; L 为一常量。在最后子树 优化过程中,不属于任何子树的节点,边权值进行排 序。设置在最小生成森林中每棵子树节点数目大于 一定阈值 A,否则合并到最近子树。通过公式(2) 及合并处理,能根据地物的空间尺寸自适应的分割 出不同大小的区域。同时可以通过设置多组参数 L,A,可以生成多个尺度的分割结果。(如图 1 中 Scale1,Scale2,Scale3)。

2.3 基于分段森林的图结构

使用分段森林算法将原始像素聚合为不同大小 区域的子树,并将每个子树视为图节点,可以大大提 高图神经网络半监督分类的计算效率。首先,高光 谱图像中的每一个像素节点和子树对应关系存储在 节点转换矩阵 Q_{ii} 表示如下:

$$Q_{ij} = \begin{cases} 1, \text{if } v_i \in T_j \\ 0, \text{else} \end{cases}$$
(3)

式中, v_i 为高光谱图像中的像素点, T_j 表示任意一

棵子树。当像素节点 v_i 属于子树 T_j,则 Q_{ij} 中(*i*,*j*) 位置置为1,否则置为0。如图2所示,表示像素和 子树之间的关系,图节点特征为子树所有像素值的 平均。值得注意的是,每棵子树中的像素节点个数 并不相同。

Fig. 2 Relation between pixels and subtrees

为了构建图网络,还需建立图节点(子树)之间 的关系,本文根据四邻域信息描述子树之间的关系, 并保存在邻接矩阵 *S_{ii}*中,如公式:

$$S_{ij} = \begin{cases} 1, \text{if } T_i, T_j \text{ are adjacent} \\ 0, \text{else} \end{cases}$$
(4)

如果子树 T_i和子树 T_j满足四邻域关系, S_{ij}中 (*i*,*j*)位置为1,否则置0。通过用子树区域来表示 图结构,这样大大减少了计算成本。

2.4 多尺度图节点的对齐转换

通过调节构建分段森林中参数 L,A,可以生成 K 个尺度的分段森林及图结构,为了综合利用不同 尺度下节点的语义特征,还需考察节点在不同尺度 之间的关系:

$$Z_{ij}^{(k)} = \begin{cases} Q_{ij}^{(k)}, k = 1\\ (Q_{ij}^{(k-1)})^T Q_{ij}^{(k)}, 2 \leq k \leq K \end{cases}$$
(5)

图转换矩阵 $Z_{ij}^{(k)}$ 中表示 $k - 1 \ \pi k$ 两个尺度之间的关系,可以将不同尺度中的特征进行传递,其中 $Q_{ij}^{(k-1)}, Q_{ij}^{(k)}$ 可由公式(3)得出。通过相邻的两个 尺度之间矩阵相乘,完成相邻两个尺度图结构的 对齐。

3 模型原理

本文所提出模型部分主要包括多尺度图特征的转换(pooling/unpooling)和编码、解码特征提取 模块。通过U-net结构提取多尺度特征,并在同一 尺度的编、解码两端加入了跳层连接,实现了更深 层次的特征提取,所提出的模型框架图如图 3 所示。

Fig. 3 Architecture of the proposed SFMSGCN

3.1 图卷积神经网络模块

GCN 网络通过在图中对节点特征进行聚合,挖 掘非规则格网的局部信息,并通过多次 GCN 扩大感 受野,获取更深层的特征。

 $H^{(k+1)} = h(D^{-1/2}SD^{-1/2}H^{(k)}W^{(k)})$ (6) 式中, S = S + I, S可以通过公式(4)得到, S表示具 有自连接的无向图 G 的邻接矩阵, 保留节点本身信 息。 $D \in S$ 的度矩阵, $D_{ii} = \sum_{j} S_{ij}, D^{-1/2}SD^{-1/2}$ 为进 行归一化; $H^{(k)}$ 是当前层的输入; $W^{(k)}$ 是可学习的 权值矩阵。 $h(\cdot)$ 为激活函数, 保持每层图卷积神经 网络传播过程中保持线性, 并防止梯度消失。在实 验中, 每个尺度图卷积模块有两层 GCN, 由图 4 所 示, BN 表示归一化, Leaky-Relu 表示激活函数。

图 4 GCN 模块 Fig. 4 Structure of GCN

3.2 光谱空间卷积(SSConv)模块

光谱空间卷积(SSConv)是一个深度可分离 (Depthwise Separable Convolution)网络结构。如图5 所示,该模块由一个逐点卷积层(Pointwise Convolution)和一个逐通道卷积层(Depthwise Convolution) 组成。逐点卷积层的作用只对输入数据在通道维进 行特征提取;而逐通道卷积层则只在空间维进行特 征提取。

Fig. 5 Structure of SSConv

实验中,输入数据首先通过批量归一化进行处理,然后经过逐点卷积层进行通道维特征聚合,以及Leaky-Relu激活函数以获得更强的非线性能力;再将特征图送入顺序连接地多个5×5深度卷积层,对空间特征进行提取Leaky-Relu激活,最终完成初始数据空谱特征的提取。

3.3 SFMSGCN 模型

首先将高光谱图像输入模型中,采用 SSConv 模 块进行浅层特征提取像素级别的特征图。整个模型 部分呈 U-net 架构,如图 3 所示,左边是编码过程, 右边是解码过程。

3.3.1 多尺度图特征对齐转换

在池化过程中 $Z_{ii}^{(k)}$ 要进行列归一化,如式:

$$Z_{ij}^{(k)} = Z_{ij}^{(k)} / \sum_{m} Z_{m,j}^{(k)}$$
(7)

将多尺度图特征的进行转换,提取精特征信息 转换到粗特征信息,如以下公式所示:

 $H^{(k)} = \text{Pool}(H^{(k-1)}) = (Z_{ij}^{(k)})^{T} H^{(k-1)}$ (8)

当k=1时,将像素节点的特征信息转换到子树 特征,即通过图像空间转换到图空间;当 $k\ge 2$ 时,进 行将精特征到粗特征之间的特征对齐转换。 $Z^{(k)}$ 可 由公式(5)得到, $H^{(k)}$ 是表示每个尺度的特征向量, 将每个尺度图中子树视为节点,充分提取每个子树 邻居节点特征。 类似地在上采样解码过程中,采用解池化从粗 特征到精特征对齐转换,来进行后续的图卷积特征 提取。其解池化如式:

 $H^{(k)} = \text{UNPool}(H^{(k+1)}) = (Z^{(k+1)}) H^{(k+1)}$ (9) 3.3.2 编码模块

编码提取特征整个过程如式:

 $H^{(k)} = GCN((Pool(H^{(k-1)}), S^{(k)})$ (10) 式中,GCN 是3.1节的图卷积模块, $S^{(k)}$ 为当前图结 构的邻接矩阵。每一层级的图结构通过两层 GCN 层进行节点的聚合和更新,特征通道翻倍,实现了由 精到粗级别的特征提取。

3.3.3 解码模块

在模型不断的加深过程中,网络逐渐提取高 光谱图像的深层语义特征,但丢弃了相关边缘、细 节纹理等浅层特征。因此,解码过程中加入了跳 层连接,对浅层特征进行相应的补充,进行了 Cat 操作,实现了高光谱图像的单个尺度的特征并联。 将并联的特征通过 GCN 模块组成解码器,学习更 具区分性的特征,特征通道数保持不变。解码整 个过程如式:

 $H^{(k)} = \begin{cases} Cat(UNPOOL(H^{(k+1)}), H^{(k)}), k = 1\\ GCN(Cat(UNPOOL(H^{(k+1)}), H^{(k)}), S^{(k)}), 2 \le k \le K \end{cases}$ (11)

解码器集成多级特征以生成分类结果,实现了 由粗到精级别的特征提取。

最后采用 SSConv 进行对获取的多尺度特征图 进行融合。采用交叉熵损失函数来训练我们的网络 模型,得到每个像素的类别,公式如下:

$$L = -\sum_{s \in Y_{\text{label}}} \sum_{f=1}^{C} Y_{sf} \ln O_{sf}$$
(12)

其中, C 为类别数; Y_{g} 表示标签矩阵; O_{g} 表示像素属 于第f 类的概率。

4 实验结果与分析

4.1 实验数据

本文采用两个公开数据集(Indian Pines, Salinas)来验证提出的方法分类性能。

第一个数据集是 Indian Pines 数据集,使用 AVRIS(Airborne Visible Infrared Imaging Spectrometer)光谱仪对美国印第安松区域进行成像。整个数 据集图像大小 145×145,涵盖了 200 个波段,有十 六个类别。伪彩色图像如图 6(a)所示。

Fig. 6 Classification maps of different methods for the Indian Pines

第二个数据集是 Salinas,2006 年由 AVIRIS 探 测器采集美国加利福尼亚州 Salinas 山谷得到的, 图像大小为512×217 个像素,包含了 204 个光谱 波段,空间分辨率为 3.7m,共有 16 个类别,涵盖 了大量的植被、土壤和建筑等目标物。伪彩色图 像如图 7(a)所示。

4.2 实验方案

本文实验在原有 SFMSGCN 基础上,设置了 6 组 对比实验。第一组是 SVM;第二组实验 1D 和 3D 卷 积混合的深度空谱残差算法(SSRN)^[15];第三组实 验多尺度动态图卷积网络(MDGCN)^[16],通过图卷 积提取动态更新的图节点特征;第四组实验边缘标 记图神经网络(EGNN)^[17]将边缘卷积(EdgeConv) 引入 GNN,自适应地节点与其邻居之间的关系,来 聚合信息;第五组实验是 1D、2D 和 3D 卷积混合的 神经网络(HybirdSN)^[18];第六组实验是动态 2D 卷 积神经网络(DCNN)^[19];第七组实验是本文提出的 方法。在实验中,采用随机梯度下降方法作为优化器,分类交叉熵损失函数进行训练,学习率为0.0005,训练 epoch 设置为200。每个实验分别运行五次,取每组实验分类结果平均数值和标准差作为最终结果,每行加粗字体为最好的精度。

表1是不同算法在 Indian Pines 数据集中的分 类结果对比,每个类别中选取5%样本作为带标签 的训练样本用作训练,选取5%样本用于验证,其余 样本作为未带标签样本用于测试,分段森林分割尺 度分别为1550,950,600。本文所提出算法OA,AA, KAPPA分别是97.8%,94.32%,97.5%。由于 Indian Pines 数据集含有大量的细小类别区域,在不 同分割尺度范围内的区域可能包含不同细节信息, 使用多尺度分类可以充分利用这些信息并进行更精 准的分类。由于分段森林的构建和多尺度特征对 齐,本文所提出方法相对 MDGCN 总体精度增加了 3.26%,可以更好的利用多尺度特征。Oats 地物样 本类别数目为20,Wheat 地物样本类别数目为205, 这两个类别样本类别较少,分类精度并不高,所以本 文模型对一些少样本类别的学习分类性能并不佳。 尽管个别类别精度较低,但本文提出方法总体分类 精度最高。图6表明,得益于多尺度分割森林强大 的空间分割能力,SFMSGCN 在类别边缘分类相比较 其他对比算法分类性能更好。而 SVM 算法并未同 时考虑空谱联合特征,在分类可视化结果上存在大 量噪声。

Class	SVM	SSRN	MDGCN	EGNN	HybirdSN	DCNN	SFMSGCN
Alfalfa	41.30	88.26 ± 15.65	93.75 ±0	47. 39 ± 7. 19	92. 17 ± 7. 48	80.00 ± 9.16	99. 50 ± 1. 00
Corn-notill	71.29	90.07 ± 2.60	92. 31 ± 0. 21	78.72 ± 2.63	83.85 ± 3.25	82. 91 ± 2. 90	97. 80 ± 0. 10
Corn-mintill	52.25	84.46 ± 5.08	93.12 ± 0.01	58.09 ± 2.64	84. 14 ± 3. 14	80.07 ± 1.79	98. 71 ± 0. 10
Corn	45.14	94. 35 ± 3. 57	96. 13 ± 0. 02	66. 91 ± 9. 56	82. 27 ± 10. 55	86. 32 ± 1. 18	92. 39 ± 4. 45
Pasture	85.91	88.28 ± 2.69	95.85 ± 0.35	81. 11 ± 3. 08	88.15 ±0.71	88.86 ± 1.29	97. 55 ± 1. 31
Trees/Grass	90.82	95. 7 ± 6. 59	97. 43 ± 6. 59	95. 80 ± 0. 88	96. 54 ± 1. 10	92.46 ± 1.94	98. 63 ± 1. 09
Pasture-mowed	75.00	100 ± 0	69. 23 ±0	77. 14 ± 10. 49	97. 85 ± 4. 25	95.00 ± 2.85	80.00 ± 19.40
Hay-windrowed	94.56	99.67 ±0.31	97.99 ±0	98. 24 ± 1. 27	99. 70 ± 0. 16	93. 97 ± 1. 15	99.95 ±0
Oats	25.00	99 ± 2	100 ± 0	35 ± 0	89 ± 12	99 ± 2	67. 78 ± 24. 19
Soybeans-not	75.20	90.78 ± 6.36	84. 59 ± 0. 57	74. 27 ± 1. 98	94. 83 ± 1. 23	90.96 ± 1.50	95.00 ± 0.10
Soybean-mintill	70.71	93. 8 ± 0. 64	94. 8 ± 0. 46	89. 53 ± 0. 36	95. 51 ± 1. 88	83. 84 ± 4. 30	98.58 ± 0.73
Soybean-clean	57.17	93.69 ± 2.35	89.27 ±0.96	62. 73 ± 4. 09	90. 69 ± 2. 90	85. 53 ± 3. 40	94. 78 ± 2. 69
Wheat	96. 58	100 ± 0	99. 43 ± 1. 14	98.83 ± 1.10	100 ± 0	99.80 ± 0.23	98.9±1.24
Woods	93.99	95. 30 ± 6. 17	99. 37 ± 0. 03	94. 26 ± 0. 53	99.47 ±0.36	95.06 ± 6.38	99. 94 ± 0. 70
Building-Grass	42.74	96.06 ± 4.14	99. 55 ± 0. 33	89. 27 ± 5. 42	95.28 ±0.17	91. 70 ± 5. 60	98.55 ± 1.08
Stone-steelTowers	86.02	99. 57 ± 0. 53	98.41 ±0	77.42 ± 3.90	99. 13 ± 1. 25	100 ± 0	91.08 ± 6.35
0A/%	73.90	92. 84 ± 1. 21	94. 24 ± 0. 23	82.73 ± 0.60	92.82 ± 0.90	87.75 ± 0.91	97. 8 ± 0. 23
AA/%	69.00	94. 31 ± 1. 47	93. 83 ±0. 13	76. 54 ± 0. 70	93.04 ±0.16	90. 34 ± 0. 76	94. 32 ± 0. 17
KAPPA/%	70.3	91.84 ± 1.38	93. 39 ± 0. 27	80. 17 ± 0. 71	91.81 ±0.10	86.09 ± 0.10	97. 50 ± 0. 26

表 1 Indian Pines 数据集上不同算法的分类精度 Tab. 1 Classification accuracy of different algorithms on Indian Pines dataset

在 Salinas 数据集中,每个类别中选取1%样本 作为带标签的训练样本用作训练,选取0.5%样本 用于验证,其余样本作为未带标签样本用于测试。 本文实验方法采取第一级尺度为像素级别,分段森 林分割尺度分别为550,350,150。由表2可以看出 本文所提出的方法,评价指标 OA,AA,KAPPA 均在 对比算法中取得了最大数值,分别是 99.8 %, 99.8 %,99.78 %。在类别 8(Grapes untrained)和 类别 15(Vinyard untrained)实验对比算法分类准确 率大多低于其他类别分类精度,因为这两种类别光 谱特征相似,本文提出的方法,对这两个类别有更好 的分类精度,算法能够很好的保留光谱波段信息进

11月八0 至1 016	1.1.1.1	$\pi \mathcal{K} \mathbb{K} \pm \mathcal{I} \mathcal{I}$		111/1/1/							
MDGCN 模型对分类	类效果的	的改进是明显	的。图7表	好的分类效	效果。						
表 2 Salinas 数据集上不同算法的分类精度											
Tab. 2 Classification accuracy of different algorithms on Salinas dataset											
Class	SVM	SSRN	MDGCN	EGNN	HybirdSN	DCNN	SFMSGCN				
Brocoli_green_weeds_1	98.75	100 ± 0	100 ± 0	100 ± 0	99.90 ± 0.06	98.00 ± 1.66	100 ± 0				
Brocoli_green_weeds_2	99.24	100 ± 0	99.73 ± 0.53	94. 83 ± 1. 33	99.88 ± 0.12	95.94 ± 7.61	100 ± 0				
Follow	98.78	98.77 ± 2.45	99.45 ± 0.44	95.29 ± 0.59	99. 93 ± 0. 12	98.00 ± 0.89	100 ± 0				
Fallow_rough_plow	99. 71	99. 93 ± 0. 08	98.04 ± 1.16	97. 54 ± 0. 68	98.60 ± 0.813	99.46 ± 0.07	99.89 ± 0.08				
Fallow_smooth	92.56	98.24 ±0.70	95.48 ± 1.49	97.49 ±0.17	98.89 ± 0.64	96.28 ± 0.26	99. 21 ± 0. 03				
Stubble	99.06	99.99 ±0.01	98.63 ± 0.27	97. 50 ± 0. 68	99.69 ± 0.18	98.24 ± 0.68	99.96 ± 0.07				
Celery	99.18	99.98 ±0.01	99.69 ± 0.20	99.38 ± 0.42	99. 93 ± 0. 04	98.52 ± 0.63	99. 93 ± 0. 08				
Grapes untrained	66.76	90.28 ± 6.70	88. 21 ± 3. 72	97. 54 ± 0. 68	95. 54 ± 0. 74	70. 31 ± 10. 25	99.78 ± 0.20				
Soil_vinyard_develop	97.96	99.99 ±0.01	98.09 ± 1.56	99.86 ± 0.05	99.89 ± 0.17	97.41 ± 1.26	100 ± 0				
Corn senesced green weeds	87.73	96. 22 ± 1. 07	89.76 ± 2.26	94.00 ± 1.49	97. 20 ± 1. 63	87.08 ±0.97	99.46 ± 0.10				
Lettuce_romaine_4wki	86.42	99.55 ± 0.32	98.84 ± 1.21	99.81 ±0.11	99. 26 ± 0. 44	93.99 ± 2.01	99. 98 ± 0. 03				
Lettuce_romaine_5wki	99.27	100 ± 0	92.28 ± 1.06	97.72 ± 0.02	99.75 ± 0.21	99.72 ± 0.24	100 ± 0				
Lettuce_romaine_6wki	97.92	99.45 ±0.77	95.11 ± 0.61	13. 51 ±0. 77	99.78 ± 0.26	98.45 ± 0.65	99. 91 ±0. 17				
Lettuce_romaine_7wki	82. 89	99.36 ± 0.86	84. 23 ± 3. 53	29.98 ± 2.14	99.77 ± 0.27	95.02 ± 0.31	99. 21 ± 0. 33				
Vinyard untrained	65.89	90. 13 ± 4. 40	95. 20 ± 0. 51	99.68 ± 0.09	84.48 ± 1.01	83.45 ± 5.15	99. 69 ± 0. 28				
Vinyard vertical trellis	95.18	98.61 ±0.47	100 ± 0	99.07 ± 0.28	98. 81 ± 1. 42	97. 30 ± 1. 48	99.89 ± 0.22				
0A/%	86.05	96. 21 ± 0. 91	95.06 ± 0.85	94.82 ±0.41	96.60 ± 0.06	89.32 ± 2.26	99.80 ± 0.04				
AA/%	91.71	98.16 ±0.13	96.06 ± 0.22	88. 47 ±0. 23	98. 21 ± 0. 11	94. 19 ± 1. 16	99.80 ± 0.02				
KAPPA/%	84.50	95.78 ± 1.00	94. 51 ± 0. 94	94. 24 ± 0. 46	96. 22 ± 0. 07	88.15 ± 2.48	99.78 ± 0.04				

行分类。基于 GNN 两种分类模型, 多尺度图卷积 明了本文提出筧法在且有相似光谱的类别中有了较

4.3 模型深度对分类精度的影响

SFMSGCN 中模型深度是影响分类精度的一个 重要因素。由图 8 可以得出 Salinas 数据集,可以看 出当模型网络深度为3时,分类精度最高,标准差数 值最小,模型性能最为稳定,这两个数据集不需要太 深的模型,就可以得到很好的分类精度,反而模型太 深会造成过拟合现象。对于 Indian Pines 数据集,类 别较多并且个别类别区域较小,具有相对复杂类别 区域,随着模型深度的加深,精度逐渐提高至稳定。 因此,在本文所提出的 SFMSGCN 模型中,对于小样 本数据建议网络模型层数为3~6层。

Fig. 8 Classification performance of different model depths

4.4 跳层连接的影响

在消融实验中,去除了编码器和解码器之间的 跳层连接功能,实现了不同数据集在不同模型深度 下的分类结果。从图9中可以看出,两个数据集中, 如果去掉跳层连接,随着模型深度的增加,分类精度 呈逐渐下降的趋势,并且模型不稳定。对比图 8 中, SFMSGCN 加入的跳层连接可以更好的处理较为复 杂场景数据集,解决了网络易过平滑的问题。与此 同时,对于小样本的数据集,可以有更好的分类精 度。随着模型深度的增加,在编码器和解码器之间 使用跳层连接操作来融合互补的多尺度特征。

Fig. 9 Remove the classification performance of layer-skip connections

4.5 运行时间效率对比

表3给出了对比实验算法和本文所提出算法训 练时间。本文所提出算法训练时间相对基于 CNN 方法的 HybirdSN、DCNN 方法快,相对 MDGCN 训练 时间有一些提升,相对 EGNN,训练时间慢,但是分 类性能有着很大的提升。本文方法在短时间内训 练,可达到一个较好的分类效果。 4.6 学习率对分类性能影响

学习率也是影响分类精度的一个重要因素,选取学习率为0.0001,0.0005,0.001,0.005 在两个数据集上进行分类精度的对比试验。图 10 表明在 Indian Pines 数据集中,学习率大于0.0005,分类精度 逐渐降低。在两个数据集中,学习率为0.0005 分类 性能最佳。

表3 各算法训练时间比较

Гаb. З	Com	parision	of	testing	and	training	time	of	each	algori	thm

Dataset	SSRN	MDGCN	EGNN	HybirdSN	DCNN	SFMSGCN
Indian pines	114. 99	190. 38	3. 21	115. 13	16. 18	5.6
Salinas	72. 24	82. 99	6. 38	550. 54	53.34	19.65

Fig. 10 Different learning rate classification performance

5 结 语

本文在构建分段森林图结构中,充分考虑了高 光谱图像中像素节点之间的空间信息,并同样考虑 到每类地物尺寸,建立了不同大小的子树区域。随 着模型深度的增加,图神经网络实现了深度语义特 征提取和多尺度浅层特征信息融合。通过提取不同 尺度区域的光谱和空间特征,从而能够利用不同尺 度的特征信息来提高分类精度。在接下来未来的研 究中,将进一步考虑少样本类别的精度,以提高整体 分类精度。

参考文献:

- [1] Wang Cailing, Hu Bingliang, Wang Hongwei, et al. Hyperspectral image target detection algorithm based on constrained maximum correlation coefficient[J]. Laser & Infraed, 2016, 46(1):98 102. (in Chinese)
 王彩玲, 胡柄樑, 王洪伟, 等. 约束最大相关系数的高光谱影像目标探测研究[J]. 激光与红外, 2016, 46(1):98 102.
- [2] Li Wei, Lv Meng, Chen Tiianhong, et al. Applications of spectral images in biomedine [J]. Journal of Image and

Graphics,2021,26(8):1764-85.(in Chinese) 李伟,吕蒙,陈天虹,等. 高光谱图像在生物医学中的 应用[J]. 中国图象图形学报,2021,26(8): 1764-1785.

- [3] Adams J B, Sabol D E, Kapos V, et al. Classification of multispectral images based on fractions of endmembers:application to land-cover change in the Brazilian Amazon[J]. Remote Sensing of Environment, 1995, 52(2):137-154.
- [4] Tarabalka Y, Fauvel M, Chanussot J, et al. SVM and MRF-based method for accurate classification of hyperspectral images [J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7:736 – 740.
- [5] Abe B T, Olugbara O O, Marwala T. Experimental comparison of support vector machines with random forests for hyperspectral image land cover classification [J]. Journal of Earth System Science, 2014, 123(4):779 - 790.
- [6] Chen Y, Jiang H, Li C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10);6232-6251.
- [7] Meng Z, Zhao F, Liang M, et al. Deep residual involution network for hyperspectral image classification [J]. Remote Sensing, 2021, 13(16):3055.
- [8] Wang W, Dou S, Jiang Z, et al. A fast dense spectral-spatial convolution network framework for hyperspectral images classification [J]. Remote Sensing, 2018, 10 (7):1068.
- [9] Zhong Z, Li Y, Ma L, et al. Spectral-spatial transformer network for hyperspectral image classification: a factorized architecture search framework [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-15.

- [10] Zuo Xibing, Liu Bing, Yu Xuchu, et al. A graph covolutiion network method for small sample classification of hyperspectral images [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10):1358 – 1369. (in Chinese)
 左溪冰,刘冰, 余旭初,等. 高光谱影像小样本分类的 图卷积网络方法[J]. 测绘学报, 2021, 50(10): 1358 – 1369.
- [11] Liu Q,Xiao L, Yang J, et al. CNN-enhanced graph convolutional network with pixel and superpixel-level feature fusion for hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (10):8657 8671.
- [12] Ding Y,Zhao X,Zhang Z, et al. Graph sample and aggregate-attention network for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022,19:1-5.
- [13] Wan S, Gong C, Zhong P, et al. Multiscale dynamic graph convolutional network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3162 - 3177.
- [14] Ling J, Li L, Wang H. Improved fusion of spatial information into hyperspectral classification through the aggrega-

tion of constrained segment trees:segment forest[J]. Remote Sensing,2021,13(23):4816.

- [15] Zhong Z L, Li J, Luo Z M, et al. Spectral-spatial residual network for hyperspectral image classification: a 3D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):847-858.
- [16] Wan S, Gong C, Zhong P, et al. Multiscale dynamic graph convolutional network for hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5):3162-3177.
- [17] Hu H, Yao M, He F, et al. Graph neural network via edge convolution for hyperspectral image classification [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.
- [18] Roy S K, Krishna G, Dubey S R, et al. HybridSN: exploring 3D – 2D CNN feature hierarchy for hyperspectral image classification [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2):277 – 281.
- [19] Makantasis K, Karantzalos K, Doulamis A, et al. Deep supervised learning for hyperspectral data classification through convolutional neural networks [C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),2015:4959-4962.