文章编号:1001-5078(2016)04-0439-05

·红外技术及应用 ·

基于红外热像的钢水测温模型研究

马翠红,刘俊秘,杨友良,位佳佳 (华北理工大学,河北唐山063009)

摘 要:基于热辐射测温原理,介绍了红外热像仪测温理论,为了提高钢水的测温精度,搭建了 实验平台,经过实验获得不同温度下钢水的红外图像。利用 Matlab 软件提取图像的灰度均 值,用最小二乘法和 BP 神经网络进行温度 - 灰度拟合曲线,从而得到红外热像测温的模型, 使钢水测温误差达到了1%,最终达到测量精度和设计要求,此方法为熔融金属在线红外热像 测温的研究打下了坚实的基础。

关键词:红外热像测温;模型;钢水;Matlab;BP 神经网络;最小二乘法 中图分类号:TN219 文献标识码:A DOI:10.3969/j.issn.1001-5078.2016.04.012

Research on molten steel temperature measurement model based on infrared thermography

MA Cui-hong, LIU Jun-mi, YANG You-liang, WEI Jia-jia

(North China University of Science and Technology, Tangshan 063009, China)

Abstract: In order to improve the temperature measurement accuracy of molten steel, an experimental platform based on the principle of thermal radiation temperature measurement is set up, and the infrared images of molten steel under the different temperatures are obtained. The average gray value of the image is extracted using MATLAB, and then fitting curve of the temperature and gray is obtained using the least squares method and BP neural network. Finally, the model of the infrared temperature measurement is gotten, and the molten steel temperature measurement error reaches 1%, which meets the requirement of the measurement precision. This method lays a foundation for the research on molten metal online infrared temperature measurement.

Key words: infrared thermal imaging temperature measurement; model; molten steel; Matlab; BP neural network; least square method

1 引 言

随着科技快速发展,使各行各业对于产品质量 好坏,生产效率高低都提出了极高的要求。在钢铁 行业中,测温的精度直接影响着被控系统的稳定性 和实效性,选择方便准确的温度测量与控制方法,对 于炼钢过程中能源的节约及生产效率的提高都具有 重要意义^[1-3]。因此提出了利用红外热像仪测钢水 温度的方法。

红外热像仪显示的是红外图像,红外图像反映 的是目标表面温度分布情况,由此,需要建立图像灰

基金项目:国家自然科学基金项目(No. 61171058)资助。

作者简介:马翠红(1960-),女,教授,主要研究方向为复杂工业过程的建模与控制。

通讯作者:刘俊秘(1989-),女,研究生,主要研究方向为复杂工业过程的建模与控制。E-mail:1207051567@qq.com 收稿日期:2015-07-03

度值与温度之间的对应关系,从而通过图像灰度值 来确定目标表面温度,达到测温的目的。主要工作 就是建立测温模型,给出温度灰度间的具体表达式, 同时进行实验数据测量,并对模型进行验证。

2 红外热像仪测温原理

红外热像仪测温是靠接收被测物体表面发射的 辐射来确定其温度的。实际测温时,热像仪接收到 的有效辐射包括被测目标自身辐射、目标反射周围 环境物体辐射以及大气辐射三部分^[4-9]。

被测物体表面的辐射亮度为:

 $L_{\lambda} = \varepsilon_{\lambda} L_{b\lambda} (T_0) + \rho_{\lambda} L_{b\lambda} (T_u) = \varepsilon_{\lambda} L_{b\lambda} (T_0) +$ $(1 - \alpha_{\lambda})L_{b\lambda}(T_{\mu})$ (1)

式中, $\varepsilon_{\lambda}L_{b\lambda}(T_0)$ 为表面光谱辐亮度; $\rho_{\lambda}L_{b\lambda}(T_u)$ 为 反射的环境光谱辐亮度;T₀为被测物体表面温度; T_{μ} 为环境温度; ε_{λ} 为表面辐射率; ρ_{λ} 为表面反射 率; α, 为表面对环境辐射的吸收率。

热像仪的辐射照度为:

 $E_{\lambda} = A_0 d^{-2} \left[\tau_{a\lambda} \varepsilon_{\lambda} L_{b\lambda} (T_0) + \tau_{a\lambda} (1 - \alpha_{\lambda}) \right] \cdot$ $L_{b\lambda}(T_{\mu}) + \varepsilon_{a\lambda}L_{b\lambda}(T_{a})$] (2)式中, A₀ 是目标可视面积; d 为该目标到测量仪器 之间的距离;通常在一定条件下, A₀d⁻² 为一个常

值; $\tau_{a\lambda}$ 为大气的光谱透射率; $\varepsilon_{a\lambda}$ 为大气辐射率。 热像仪一般工作在 2~5 µm 或 8~13 µm 两个

波段,通常认为 ε_{λ} , α_{λ} , $\tau_{a\lambda}$ 与 λ 无关,从而得到热 像仪的响应电压为:

$$V_{s} = A_{R}A_{0}d^{-2} \{ \tau_{a} [\varepsilon \int_{\Delta\lambda} R_{\lambda}L_{b\lambda}(T_{0}) d\lambda + (1-\alpha) \cdot$$

$$\int_{\Delta\lambda} R_{\lambda} L_{b\lambda}(T_{u}) d\lambda] + \varepsilon_{a} \int_{\Delta\lambda} R_{\lambda} L_{b\lambda}(T_{a}) d\lambda \}$$
(3)

令 $K = A_R A_0 d^{-2}$, 并取 $\int_{\lambda} R_{\lambda} L_{b\lambda}(T) d\lambda = f(T)$, 则式(3)变为:

 $V_{s} = K \{ \tau_{a} [\varepsilon f(T_{0}) + (1 - \alpha) f(T_{u})] +$ $\varepsilon_a f(T_a)$

令
$$V_{s}/K = f(T_{r})$$
,则式(4)变为:
 $f(T_{r}) = \tau_{a} [\varepsilon f(T_{0}) + (1 - \alpha)f(T_{u})] + \varepsilon_{a} f(T_{a})$
(5)

由普朗克辐射定律得:

$$f(T) = \int_{\Delta\lambda} R_{\lambda} L_{b\lambda}(T) d\lambda = \int_{\Delta\lambda} R_{\lambda} \frac{C_{1}}{\pi} \lambda^{-5} \left[\exp(\frac{C_{2}}{\lambda T}) - 1 \right]^{-1} d\lambda$$
(6)

式中, $C_1 = 3.7418 \times 10^{-4} (W \cdot cm^2)$ 为第一辐射常 数, C₂ = 1.4388(cm・K) 为第二辐射常数。

对红外探测器,当不考虑 R, 随波长变化时,对 (6)式在3~5 µm 和8~14 µm 积分,可得到 f(T) 的表达式,它近似满足:

$$f(T) = \int_{\Delta \lambda} L_{b\lambda} d\lambda \approx a T^{b}$$
⁽⁷⁾

3 实验方案

本实验采用主要设备:(1)银泰机电设备厂生 产的 YTKJ9.1A 新型电源控制板小容量中频炉,最 大输出、输入功率为15 kW;输出中频电压为750 V; 输出中频电流为 30 A:输出振荡频率为 4000 Hz。 (2)红外热像仪采用的是 MAG30-110077,型号为 MAG30HT, 探测器像素数为 384 × 288, 镜头为 f15 F1 filt0.082,镜头焦距为 15 mm。(3) 卓立汉光 MC600 位移台

实验示意图如图1所示。首先利用中频炉对 钢进行加热至其融化,然后通过调节中频炉使钢 水保持熔融状态,利用红外热像仪来接收高温钢 水辐射出的红外线,把得到的图像传至电脑,通过 热电偶测量出此时钢水的温度值作为标准值。通 过改变中频炉的功率,获得不同温度下钢水的红 外图像。

Fig. 1 Structure of the hardware system

4 数据分析

(4)

在做实验时,中频率与红外热像仪之间的距离 为1.5 m,环境温度为25 ℃左右。实验时将红外热 像仪对准中频炉,把这种环境下红外热像仪拍到的 钢水图像传至计算机进行一系列的处理,最终找出 图像上与热电偶测温大致相同的点,提取图像的灰 度均值。表1中记录了钢水温度与灰度对应的实验 数据。

表1 钢水温度与灰度对应关系实验数据

Tab. 1 Molten steel temperature and gray corresponding relation between the experiment data

温度/℃	1322	1342	1363	1382	1405	1427	1447	1469	1490
灰度	79	83	89	97	106	113	116	136	140
温度/℃	1504	1527	1549	1570	1593	1613	1633	1658	1676
灰度	150	156	167	174	186	196	209	216	228

4.1 最小二乘法拟合

从辐射理论出发,可以知道 *f*(*T*) 实际反映的是辐射能量的大小,有理由认为:

$$f(T) = aT^b + c \tag{8}$$

按公式(8)进行拟合,图2给出了拟合的结果。

Fig. 2 The least squares curve fitting

这是环境温度为 25℃ 时候的情况,此时 *a* = 25.0309, *b* = 0.6189, *c* = 956.3295,取其他值时公式的形式都可以用公式(8)来表示,只是系数 *a*,*b*,*c* 的值略有差别。

4.2 BP 神经网络拟合

为了与最小二乘法拟合效果进行比较,用 BP 神经网络方法对表1中实验数据进行曲线逼近。在 实际应用的过程中都是根据图像的灰度值来计算出 温度,一般在逼近的过程中将温度T设为因变量,灰 度G设为自变量。BP神经网络适合没有解析表达 式的曲线拟合。本文采用1:4:1的网络结构对表 1的实验数据用 BP神经网络算法进行因果关系逼 近。隐层和输出层分别采用正切S型神经元和线性 神经元,经过400次训练,得到如图3所示的拟合结 果。在设计的精度范围内,神经网络法对数据进行 拟合的结果是直观、有效的。

4.3 BP 神经网络和最小二乘法拟合结果的对比 本文采用标准差与残差平方和两个参数的大小 来评价拟合的效果,由理论知标准差和残差平方和 越小说明拟合效果越好。分析结果如表2所示。

Fig. 3 The BP neural network fitting curve

BP 神经网络与最小二乘拟合曲线相比优点如下:首先它训练过程是全局寻优,而且不用给出待 拟合曲线的方程,只要给出输入值和对应的输出 值就可以自己进行全局寻优拟合。其次,通过这 两种拟合方法标准差和残差平方和的对比可知 BP 神经网络拟合结果比最小二乘法拟合的结果更加 准确。

在实际生产过程中,钢水温度的测量需要实 时在线显示温度,一般采用最小二乘建立的模型, 这样能达到时间上的要求。如果时间允许,最好 采用 BP 神经网络模型进行测温,这样能使结果更 加准确。

4.4 模型检验

在实验室钢成熔融状态以后,用热电偶每隔 10 min 测量一次钢水温度,同时用红外热像仪连续 进行三次测温,提取红外图像大致与热电偶对应区 域的灰度均值,然后取三次测温灰度均值的平均值 代入拟合的公式,最后得到红外测得的钢水温度值。 在表3中给出了热电偶和红外热像仪对应的温度 值。为了方便与热电偶测温结果进行对比,根据表 3 绘制了热电偶和红外热像仪测温随时间变化的曲线,温度随时间的变化如图4 所示。

表2 BP 神经网络与最小二乘对比结果

Tab. 2 The BP neural network and least-square

龙座店	BP 神经	网络算法	最小二乘法		
灰皮围	标准温度	拟合值	标准温度	拟合值	
73	1322	1323.7	1322	1328.7	
83	1342	1339. 5	1342	1340. 7	
89	1363	1361.0	1363	1358.3	
97	1382	1386. 1	1382	1380. 9	
106	1405	1410.3	1405	1405.4	
113	1427	1427.2	1427	1423. 8	
116	1436	1434.1	1436	1431.6	
136	1479	1478.4	1479	1481.1	
140	1490	1487.3	1490	1490. 6	
150	1510	1509.8	1510	1513.8	
156	1527	1523.4	1527	1527.4	
167	1549	1548.7	1549	1551.8	
174	1570	1564.8	1570	1566. 9	
186	1593	1592.0	1593	1592. 2	
196	1613	1613.9	1613	1612. 8	
209	1638	1639.6	1638	1638. 8	
216	1658	1654.0	1658	1652.6	
228	1676	1675. 1	1676	1675.6	
残差平方和		130.65		162. 20	
标准差		2.69		3.01	

comparison results

表3 热电偶和红外热像仪分别测得的温度

Tab. 3 Thermocouple and infrared thermal imager

respectively	measured	temperature
--------------	----------	-------------

別に日子が	时间/min						
测益力法	0	10	20	30	40		
热电偶	1556	1594	1618	1613	1607		
红外热像仪	1554	1591	1619	1610	1604		
误差绝对值	2	3	1	3	3		

表 3 中的数据和图中的曲线说明了两种测温方 法测得的温度值虽然不完全相同,但在变化趋势上 保持着较高的一致性。它们的测温误差的绝对值小 于等于 3,达到了使钢水测温误差小于 1% 的实验目 的。由于红外热像仪测得的温度是钢水表面的温 度,而热电偶测得是钢水内部的温度,两者测得的温 度值不完全相同是符合实际情况的。

此外,在做实验时,用了8个热电偶测了5个温 度值,说明用热电偶测温不能保证每次都测温成功, 有时需要重新测量。这样在实际生产过程中,由于 人为因素或热电偶损坏都有可能造成测温的不准 确,从而影响生产的质量。

图 4 红外和热电偶测温随时间变化关系

Fig. 4 Infrared and thermocouple temperature measurement over time

5 结 论

本文通过红外热像仪测温实验获得不同温度 下熔融金属的灰度图像,利用最小二乘法和 BP 神 经网络进行了曲线拟合,都得到了较为准确的钢 水测温模型,使钢水测量误差在1%,达到了测量 精度和设计要求。采用文中建立的模型,为把红 外热像在线测钢水温度的方法应用到实际中去提 供了可能。

参考文献:

[1] DAI Jingming. Radiation temperature measurement development present situation and prospect [J]. Automation Technology and Application 2004,23(3):1-7. (in Chinese)

戴景民. 辐射测温的发展现状与展望[J]. 自动化技术 与应用,2004,23(3):1-7.

MO Zhaoxia, CHEN Yuanhong. The infrared thermal image detection technology research and development of our country[J]. Laser & Infrared, 2014, 44 (12): 1300 – 1305. (in Chinese)

莫朝霞,陈沅江.我国红外热像检测技术的研究及发展展望[J].激光与红外,2014,44(12):1300-1305.

LI Yunhong. Based on infrared thermal imaging temperature measurement technology and its application research
 [D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese)

李云红.基于红外热像仪的温度测量技术及其应用研 究[D].哈尔滨:哈尔滨工业大学,2010.

- [4] ZHANG Jie. Infrared thermal imaging temperature measurement technology and its application research [D]. Chengdu:University of Electronic Science and Technology of China,2011. (in Chinese) 张杰. 红外热成像测温技术及其应用研究[D]. 成都: 电子科技大学,2011.
- [5] JI Wenchen,ZHANG Yu, et al. The influence of temperature gradient on the infrared optical system imaging quality[J]. Laser & Infrared, 2015, 45(06):640 - 645. (in Chinese)

姬文晨,张宇,等.温度梯度对红外光学系统成像质量的影响[J].激光与红外,2015,45(06):640-645.

[6] LU Zifeng. The radiation calibration of infrared thermal imaging and temperature measuring error analysis [D].

Beijing: The Chinese Academy of Sciences, 2009. (in Chinese)

陆子凤. 红外热像仪的辐射定标和测温误差分析[D]. 北京:中国科学院,2009.

- [7] LEI Shuyu, TAO Yu. Uncooled infrared focal plane detector fixed pattern noise is studied [J]. Laser & Infrared, 2015,45(01):58-62. (in Chinese)
 雷述宇,陶禹. 非制冷红外焦平面探测器固定图形噪声研究[J]. 激光与红外,2015,45(01):58-62.
- [8] WANG Zhiguo. Infrared thermal imaging temperature measurement calibration model research [D]. Wuhan: Huazhong University of Science and Technology, 2011. (in Chinese)

王志国. 红外热成像仪测温定标模型研究[D]. 武汉: 华中科技大学,2011.

[9] ZHANG Chongguan. Key techniques of infrared radiation temperature measurement[D]. Harbin: Harbin Engineering University, 2013:32-45. (in Chinese) 张崇关. 红外辐射温度测量关键技术研究[D]. 哈尔 滨:哈尔滨工程大学, 2013:32-45.