文章编号:1001-5078(2021)08-0999-07

· 激光应用技术 ·

基于温度场模拟 TiNiTa 记忆合金涂层工艺参数选择

李超然¹,回顺尧¹,孙广云¹,胡传绪²,王 通²,董桂馥^{1,2} (1.大连大学物理科学与技术学院,辽宁大连116600;2.大连大学机械工程学院,辽宁大连116600)

摘 要:以获得 TC4 钛合金表面高质量 TiNiTa 涂层为目标,使用 ANSYS WORKBENCH 软件、 采用 3D 高斯热源,对激光熔覆 TiNiTa 粉末过程进行数值模拟仿真,研究其温度场云图分布; 并研究激光功率、扫描速度、离焦量对温度场的影响。结果表明,在能量密度为 1698 J/mm² 时 熔覆层组织致密细小、与基体呈现良好的冶金结合;熔池中心的最高温度随着激光功率的增大 而增大,随着热源移动速度和离焦量的增大而减小;另外,TC4 钛合金表面的耐腐蚀被明显改 善。模拟与试验结合确定激光熔覆的最优工艺参数为:激光功率 100 W、扫描速度 2.5 mm/s、 离焦量 10 mm、脉宽 5 ms、频率 10 Hz;通过分析可知能量密度是影响熔覆层组织及性能的重 要因素,仿真模型的正确性及方法的可行性亦可得到试验验证。

关键词:激光熔覆;温度场模拟;腐蚀特性;TiNiTa形状记忆合金

中图分类号:TG146.23;TN249 文献标识码:A DOI:10.3969/j.issn.1001-5078.2021.08.005

Research on the paramenters of TiNiTa memory alloy coating based on temperature field simulation

LI Chao-ran¹, HUI Shun-yao¹, SUN Guang-yun¹, HU Chuan-xu², WANG Tong², DONG Gui-fu^{1,2}

(1. College of Physical Science and Technology, Dalian University, Dalian 116600, China;

2. College of Mechanical Engineering, Dalian University, Dalian 116600, China)

Abstract: To obtain high-quality TiNiTa coating on the surface of TC4 titanium alloy, using ANSYS WORKBENCH software and 3D Gaussian heat source, numerical simulation of the laser cladding TiNiTa powder process was carried out; and the temperature field cloud pattern distribution, the effects of laser power, scanning speed and defocus length on the temperature field were studied. The results show that the microstructure of the cladding layer was compact and fine with good metallurgical bonding to the substrate when the energy density was 1698 J/mm². The maximum temperature in the center of molten pool increased with the increase of laser power and decreased with the increase of heat source moving speed and defocus length. In addition, the corrosion resistance of TC4 titanium alloy surface was significantly improved. The optimal process parameters were determined by combining simulation and experiment; laser power was 100 W, scanning speed was 2.5 mm/s, defocus length was 10 mm, pulse width was 5 ms, and frequency was 10 Hz. In addition, the analysis shows that the energy density is an important factor affecting the structure and performance of the cladding layer, and the correctness of the simulation model and feasibility of the method can also be verified by experiments.

Keywords: laser cladding; temperature field simulation; corrosion characteristics; TiNiTa shape-memory alloy

作者简介:李超然(1996-),女,硕士研究生,主要从事形状记忆合金研究。

基金项目:辽宁省自然科学基金项目(No. 20180550101)资助。

通讯作者:董桂馥(1973-),女,副教授,主要从事智能材料研究。E-mail:dgfu0451@163.com

收稿日期:2020-10-21;修订日期:2020-11-24

1 引 言

钛合金具较高强度、良好表面特性而在航天航空、石油、化工等领域得到广泛应用^[1-2],较典型的是 TC4 合金^[3]。该合金却因强度较低、耐磨性不好、高温耐蚀性差等缺点限制其实际应用^[4]。因此,人们尝试采用各种表面改性技术,电镀、磁控溅射等技术都存在一定缺点而受到限制^[5]。激光熔覆技术作为一种高能、快速的表面改性技术^[6],越来越受到人们的关注,尤其是基体与熔覆材料间形成冶金结合可达到最佳的表面改性效果^[7]。众所周知,对激光熔覆温度场的研究可以再现熔覆过程,对成型制件质量的预测和改善有着极其重要的作用^[8-10],也为激光熔覆工艺参数的选择和优化提供一种便捷方法。

TiNi 合金是一种智能材料,具有良好的形状 记忆效应和超弹性,特别是合金的热弹性马氏体 相变、应力诱发马氏体相变及马氏体变体的自适 应性部分可减轻载荷作用并通过弹性变形把部分 能量吸收掉,从而阻碍塑性变形的进行并减少材 料的磨损量,从而提高合金的耐磨性能。杨永强 等人^[11]将激光熔覆与激光表面氮化技术相结合制 取TiNi-TiN梯度材料,明显改善合金的耐磨性、 耐蚀性性能。彭小敏等人^[12]发现在高温下元素钽 (Ta)生成 Ta,O,的致密氧化膜,增加钛合金的抗高 温氧化性。因此,在TC4 合金表面熔覆高质量 Ti-NiTa 记忆合金涂层,可明显改善TC4 基体表面性 能。而国内外研究集中在熔覆材料种类、工艺调 整等方面以达到性能需求,但受到设备、人力、财 力等多方面的限制阻碍熔覆技术的快速发展,至 此人们将目光聚焦在模拟仿真上。Labudovic 等^[13]采取 APDL 命令流建立金属粉末沉积过程的 三维数值模型,为激光熔覆成形的温度场分析奠 定基础;段伟等^[14]在保证成形质量的前提下,通过 研究激光功率、扫描速度对温度场的影响,确定钛 合金激光熔覆过程的最佳工艺参数。至此,模拟 激光熔覆过程的温度分布可以为优化激光熔覆工 艺提供理论指导。

本文基于 ANSYS WORKBENCH 软件平台、采 用 3D 高斯热源对激光熔覆 TiNiTa 记忆合金涂层过 程进行温度场模拟,通过能量密度确定激光功率、扫 描速度、离焦量等工艺参数对温度场的影响。本文 选用 Ti 粉、Ni 粉和 Ta 粉末作为熔覆材料,结合模拟 仿真获得最佳工艺参数,并对最佳工艺获得的熔覆 涂层微观组织、相组成、耐蚀性进行研究。通过模 拟、试验相结合确定最佳的工艺参数,以期获得性能 优异的合金。

2 有限元建模

本文基于 ANSYS – WOKRBENCH 软件模拟激 光熔覆过程中温度场变化,并编写热源模型 APDL 子程序。建立激光熔覆过程温度场的三维有限元模 型,其中包含熔覆层及基板。

2.1 模型假设和热物性参数

激光熔覆过程温度场的变化是一个非稳态、非 线性的传热过程,在不影响模拟计算结果的情况下 做以下必要假设:(1)材料的性质呈各向同性,当温 度在熔点以上时仍进行固态处理^[15];(2)因为激光 加热时间极短,忽略熔池内液体的流动对温度场的 影响,不考虑熔化潜热对熔池的影响;(3)假设 TiNi-Ta 合金的各项热物理参数不随温度变化,材料热物 性参数如表 1 所示;(4)假设室温温度为 20 ℃ 且 不变。

表1 TC4 合金和 Ti - Ni 合金的热物性参数^[15-17]

Tab. 1 Thermophysical parameters of TC4 alloy and Ti – Ni alloy

材料热物性参数	Ti – Ni 合金	TC4 合金
热导率/(W・m・K ⁻¹)	53	7.955
比热容/(J・kg・K ⁻¹)	489	585
密度/(kg・m ⁻³)	6. 486	4. 430
熔点/℃	1572	1678

2.2 热源选择和边界条件

采用数值模拟的方法研究激光熔覆过程,热源 模型的建立是非常重要部分,本文选用较为普遍使 用的 3D 高斯热源模型,在距离加热中心任一点的 热流密度^[18]:

$$q = \frac{3}{\pi R^2} \eta Q \exp\left(-\frac{3r^2}{R^2}\right) \tag{1}$$

其中,*R* 为激光有效加热半径(mm);*r* 为热影 响范围上某点距加热中心的距离(mm);*η* 为工件对 激光的吸收率;*Q* 为激光器的输出功率(W)。高斯 热源模型的能量分布如图1所示,其中^[18]:

$$I_m = \frac{3Q\eta}{\pi R^2} \tag{2}$$

图1 高斯热源热流模型分布模型

Fig. 1 Distribution model of Gaussian heat source heat flux model 熔覆开始,工件温度 T₀ 与环境温度 T 相等

(T=20℃)。根据文献[19]定义其表面边界条件。

3 数值模拟及分析

3.1 几何模型

在激光熔覆过程中,激光束始终作用于工件的 表面中部,因此只取一半进行数值模拟。基材为 TC4,熔覆层为TiNiTa,基体模型尺寸为长80 mm、高 3 mm、宽80 mm;熔覆层的宽度为2 mm,厚度为 0.5 mm。取原点为0,设置空间坐标系,X 轴的正方 向为扫描路径所在方向。由于在激光熔覆过程中涉 及到网格的移动,熔覆层的温度变化很大,所以设置 每个六面体网格的宽度为0.15 mm;基体部分被分 割成更大的网格,每个六面体网格的宽度为0.75 mm,几何模型如图2 所示。

3.2 能量密度

在脉冲激光器的单个脉冲作用下,结合经验及 设备属性选用正离焦,激光常用频率为10 Hz、脉冲 宽度5 ms固定不变。众所周知,脉冲激光器可调的 参数较多,若同时改变所有参数将无法对实验结果 进行比较,故在实际生产过程中首先根据设备实际 生产情况确定一部分参数,然后在此基础上改变其 他工艺参数达到工艺要求。蒋三生等人^[20]采用脉 冲激光器在45 号钢表面熔覆 Co 基涂层,首先固定 激光器的离焦量和扫描速度不变,然后改变脉宽、频 率、电流和功率来进行工艺优化。陶春华^[21]等人在 A3钢板上熔覆 Ni60 涂层,首先固定激光器的脉宽 和频率,再调整其他工艺参数来确定最优工艺参数。 Essam 等人^[22]采用 Nd:YAG 脉冲激光器在低碳钢 基材合金上熔覆 316L 不锈钢薄层,他们固定扫描速 度为6 mm/s 不变来调节其他工艺参数。赵雨等 人^[23]首先确定固定激光器的离焦量大小,通过不同 重熔工艺参数对 YCF101 涂层质量的影响来确定最 优工艺参数。我们在进行本文实验前,首先亦是固 定激光频率为10 Hz、脉冲宽度5 ms 不变,尝试在不 同基体上采用种类不同的粉末进行实验。不论是在 AM60B 镁合金基体上熔覆 TiNi 合金,还是在 304 不 锈钢表面激光熔覆 Fe – MnSi – Cr – Ni 涂层在固定 上述激光频率和脉宽的情况下通过改变其他工艺参 数均可以高质量的熔覆层。

激光能量密度可以通过式(3)^[21]计算:

$$E(0,t) = \frac{TK}{A} \sqrt{\frac{\pi}{4\alpha t}}$$
(3)

式中,T为温度;K为材料的热导率;A为材料 吸收率;t为时间; α 是热扩散系数。材料吸收率为 0.8,利用式(3)可获得涂层材料发生熔化和汽化的 能量密度极值。当脉宽为5 ms 时,TiNiTa涂层材料 产生熔化和汽化的能量密度极值约为1.19×10³J/ mm²和2.29×10³ J/mm²。为避免熔覆材料呈现汽 化现象而影响熔覆涂层的质量,固激光器的功率应 介于 $P_{\text{#点}} < P < P_{\text{#点}}$ 之间。

3.3 仿真结果与分析

3.3.1 激光功率范围确定

本次采用的脉冲激光器能量密度由式(4)^[21]决定:

$$E = \frac{4p}{\pi D^2 t_{\nu} f} \tag{4}$$

其中, E 为激光能量密度; D 为激光光斑直径; t_p为脉 宽; f 为频率大小; p 为激光功率。将能量密度极值 1.19×10³ J/mm² 和 2.29×10³ J/mm² 分别代入(4) 式中,经计算得到本次仿真的激光功率应该在 60 W < P < 202 W 之间。根据合金熔点计算可知, TiNiTa 记忆合金粉末熔点 1572 ℃, TiNi 形状记忆合金沸点 3278 ℃。当激光功率 60 W 时熔池的最高温度为 1793.3 ℃超过基材和涂层材料的熔点, 因此涂层和基 材间可形成冶金结合, 如图 3(a)所示。当功率为 202 W 时,涂层表面的最高温度达到了 16941 ℃ 如图 3 (b)所示, 远大于熔覆层沸点, 此时材料已汽化。当 功率为150 W 时涂层熔池的最高温度为3256.5 ℃, 如图3(c)所示,接近沸点,还未汽化。根据上述分析可知激光功率范围应为60 W < P < 150 W。

Fig. 3 Transient temperature field cloud map at different power

3.3.2 工艺参数对温度场的影响

本文通过改变能量密度的大小并采用控制变量 的方法保证两个量不变得到第三个量的大小从而确 定激光功率、扫描速度和离焦量,并研究它们与最高 温度间关系。当激光扫描速度 2.5 mm/s、离焦量为 10 mm 时,发现随激光功率的增加温度逐渐增大如 图 4(a)所示,经过分析可知涂层表面最高温度和激 光功率两者之间呈正相关;当离焦量为 10 mm,P =120 W 时,最高温度随扫描速度的增加而逐渐下降, 如图 4(b)所示。当 P = 120 W,扫描速度 V =2.5 mm/s时,离焦量对温度的影响如图 4(c)所示。 从图 4(c)可看出,当离焦量从 8.5 mm 增到 15.5 mm 时(光斑直径从 1.2 mm 增到 1.5 mm),熔池的 最高温度从 3260 ℃降到 1720 ℃,该温度区间正好 位于涂层 TiNiTa 形状记忆合金的熔点和沸点之间。 在频率不变的情况下,通过离焦量的大小确定光斑 直径,根据式(5)^[23]计算得到扫描速度范围为 1.33 ~2.5 mm/s:

$$\frac{Rf}{5} < V < Rf \tag{5}$$

其中,R代表光斑半径,f代表激光器的频率。根据 上述分析,通过模拟温度场变化确定激光熔覆 TiNi-Ta 记忆合金涂层的工艺参数范围:离焦量为 8.5~ 15.5 mm;激光功率为 60 W < P < 150 W;扫描速度 范围为 1.33~2.5 mm/s。

3.4 温度场云图

当激光功率为100 W、扫描速度为2.5 mm/s、离 焦量为10 mm、脉宽为5 ms、频率为10 Hz 时,XOZ 面 瞬态温度场分布如图5 所示,随时间增加温度场分布 具有相似规律;热源中心处温度最高、热影响区越大, 随距中心处距离的增加而降低;受光斑快速移动影 响,熔池前部温度梯度较大而尾部较小;等温场呈勺 状形状,分析得到此时熔覆面温度场最高温度为 2560 ℃,此时熔覆层与基板形成良好的冶金结合。

4 验证试验

试验 TC4 基板经回火处理后切割成 80 mm × 80 mm × 3 mm 的长方体形状备用,熔覆粉末采用纯度为 99.99%、粒度为 5 μm 的 Ti、Ni、Ta 粉。熔覆

层的制备流程:粉末配制 - 预处理 - 预置粉末 - 激 光熔覆 - 性能检测。用光学显微镜对熔覆层形貌进 行观测;利用 RigaKuD/Max-UItima X 射线衍射仪分 析技术确定其结构,Co 靶 Ka 衍射;采用 CS-Studio5 电化学工作站对基板和熔覆层进行腐蚀特性测试,腐 蚀溶液为浓度 5 % 的 NaCl 溶液,测试样品的工作面 积为1 cm²。CS-Studio5 电化学站工作时的扫描速度 为0.05mV/s、频率为1 Hz、扫描电位从 -0.5~2 V。

当脉宽5 ms、频率10 Hz 时,从式(3)计算得到的 能量密度极值1.19×10³ J/mm²和2.29×10³ J/mm² 间取7个数值,再求解得到激光功率、扫描速度、离 焦量等工艺参数。结果发现当能量密度 1698 J/mm²,即工艺参数为激光功率100 W、扫描速 度2.5 mm/s、离焦量10 mm、脉宽5 ms、频率10 Hz 时涂层的质量和腐蚀性能最好。宏观和微观形态如 图6所示。熔覆层平整,宽度较均匀,平行于扫描方 向的熔覆层微观形貌如图6(b)所示,从图可以看出 基体与熔覆层之间呈现冶金结合状态。结果表明, 此时熔覆层的表面质量较高。

Fig. 6 Macromorphology and microstructure of TiNiTa cladding layer

图 7 为熔覆层室温 XRD 衍射图谱。从图中看出,熔覆层主要由具有立方结构的 B₂ 母相和具有单斜结构的 B19′马氏体相及同为立方晶系的 Ti₂Ni 相组成,具备形状记忆效应。

对基体和熔覆层进行腐蚀性能测试,极化曲线 如图 8 所示。从图中可看出,熔覆层的极化电位比 基体高 220 mV,腐蚀电流密度比基体高,从而可确 定熔覆层的极化度明显高于基体。众所周知,极化 电位越负,表明金属越易转变为离子进入溶液,越不 易耐腐蚀。因此,采用此工艺参数获得的熔覆层耐 蚀性明显高于基体 TC4 钛合金。

5 结 论

(1)通过模拟与实验相结合,成功确定制备高 质量 TiNiTa 记忆合金熔覆层,宏观和微观形貌观察 发现界面结合平整、表面没有变形且无缺陷,二者间 形成冶金结合。最佳工艺参数:激光功率100 W、扫 描速度 2.5 mm/s、离焦距离10 mm、脉宽5 ms、频率 10 Hz。此时能量密度为1698 J/mm²。

(2)XRD 分析表明,熔覆层由具有立方结构 B₂ 母相、单斜结构 B19′马氏体相和立方晶系 Ti₂Ni 相 组成,具备形状记忆效应;电化学腐蚀表明,TiNiTa 记忆合熔覆层耐蚀性显著高于基体。

(3)数值模拟结果表明,激光光斑中心的最大 温度与所采用的激光功率正相关,与离焦量和扫描 速度的大小负相关。

参考文献:

[1] Ji Chenhao, Lang Lihui, Huang Xina, et al. Study on powder-solid interface and coupling deformation of Ti6Al4V alloy powder during http forming process [J]. Journal of Central South University: Natural Science Edition, 2019, 50(1):29-37. (in Chinese)

季晨昊,郎利辉,黄西娜,等. Ti6Al4V 合金粉末高温高 压成形过程中粉固界面及其耦合变形研究[J].中南 大学学报:自然科学版,2019,50(1):29-37.

- [2] Xu Haiying, Zhang Wei, Fan Kai, et al. TC4 Titanium alloy microstructure and properties influenced by high frequency scan of electron beam [J]. Rare Metal Materials and Engineering, 2017, 46(6):1457-1462.
- [3] Hao Mingzhong, Sun Yuwen. A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach [J]. International Journal of Heat and Mass Transfer, 2013, (64): 352-360.
- [4] Han Jiege, Chen Weize, Zhang Hao, et al. Current status of research on wear resistance and oxidation resistance of titanium alloys[J]. Welding Machine, 2017, 47(3):73 78. (in Chinese)
 韩杰阁,陈蔚泽,张浩,等. 钛合金表面耐磨性能及抗氧化性能的研究现状[J]. 电焊机, 2017, 47(3): 73 78.
- [5] Xie Jie, Chen Jianyun, Li Zijun, et al. Surface modification technology of Ti-6Al-4V Alloy[J]. Titanium Industry Progress, 2013, 30(3):1-6. (in Chinese) 谢杰,陈建云,李子骏,等. Ti-6Al-4V 合金表面改性技 术[J]. 钛工业进展, 2013, 30(3):1-6.
- [6] Su Haijun, Wei Kaichen, Guo Wei, et al. New Development of laser rapid prototyping technology and its application in high performance materials processing [J]. Journal of Non-ferrous Metal, 2013, 23(6):1567 - 1574. (in Chinese)

苏海军,尉凯晨,郭伟,等.激光快速成形技术新进展 及其在高性能材料加工中的应用[J].中国有色金属 学报,2013,23(6):1567-1574.

- [7] Liu Yanan, Sun Ronglu, Niu Wei, et al. Effects of CeO₂ on microstructure and properties of TiC/Ti₂Ni reinforced Tibased laser cladding composite coatings [J]. Optics and Lasers in Engineering, 2019, 120:84 – 94.
- [8] Jiang Yichao, Cheng Yanhai, Zhang Xiancheng, et al. Simulation and experimental investigations on the effect of Marangoni convection on thermal field during laser cladding process[J]. Optik, 2020, 203:16044

[9] Liu Zhenxia, Huang Weidong, Yang Sen. Numerical simulation of laser remelting and its application in laser directional solidification [J]. Journal of Non-ferrous Metal, 2002,(3):458-463. (in Chinese) 刘振侠,黄卫东,杨森. 激光熔凝的数值模拟及其在激 光定向凝固中的应用[J]. 中国有色金属学报,2002, (3):458-463.

- [10] Liu Huaming, Qin Xunpeng, Wu Mengwu, et al. Numerical simulation of thermal and stress field of single track cladding in wide-beam laser cladding [J]. The International Journal of Advanced Manufacturing Technology, 2019, 104 (9-12):3959-3976.
- [11] Yang Yongqiang, Zhang Cuihua. Synthesis of TiNi-TiN gradient coating by hybrid method of laser cladding and laser nitriding [J]. The Chinese Journal of Nonferrous Metals,2006,(2):213-218.(in Chinese)
 杨永强,张翠红. 激光熔覆 激光氮化复合法制取 Ti-Ni-TiN 梯度材料[J]. 中国有色金属学报,2006(2):213-218.
- [12] Peng Xiaomin, Xia Changqing, Wu Anru, et al. Preparation of Ta-W coating on titanium alloy and its oxidation behavior[J]. The Chinese Journal of Nonferrous Metals, 2015,25(6):1567-1578. (in Chinese) 彭小敏,夏长清,吴安如,等. 钛合金表面 Ta-W 涂层的 制备及循环氧化行为[J]. 中国有色金属学报,2015, 25(6):1567-1578.
- [13] Labudovic M, Hu D, Kovacevic R. A three dimension model for direct laser metal powder deposition and rapid prototyping [J]. Journal of Materials Science, 2003, 38 (1):35-49.
- [14] Duan Wei, Yin Yajun, Zhou Jianxin, et al. Numerical simulation of laser cladding forming of titanium alloy TC4
 [J]. Hot Working Process, 2018, 47(16):155 159. (in Chinese)
 段伟,殷亚军,周建新,等. 钛合金 TC4 激光熔覆成形

的数值模拟研究[J]. 热加工工艺, 2018, 47 (16): 155-159.

- [15] Liu Kui, Liu Yaxuan, Niu Junjie, et al. Simulation of temperature field distribution finite element during laser cladding TiCN coatings on titanium alloy[J]. Laser Journal, 2016,37(8):27-32. (in Chinese)
 刘奎,刘雅璇,牛钧杰,等. 钛合金表面激光熔覆 TiCN 涂层及其温度场有限元模拟[J]. 激光杂志,2016,37 (8):27-32.
- [16] Liu Qianli, Li Xiangming, Jiang Yehua, et al. The influence of process conditions on the solid-liquid interface during continuous casting of large-size TC4 slabs, 2016, 37(8):27 32[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(8):1641 1648. (in Chinese) 刘千里,李向明,蒋业华,等. 工艺条件对大规格 TC4 扁锭连铸过程固液界面的影响[J]. 中国有色金属学报, 2016, 26(8):1641 1648.

[17] He Beibei. Numerical simulation and experimental investigation on thermal-mechanical behavior during selective laser melting of TiNi shape memory alloy [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 23. (in Chinese)

何贝贝.选区激光熔化 TiNi 形状记忆合金热一力耦合数值模拟及实验研究[D].南京:南京航空航天大学, 2016:23.

- [18] Li Hao, Wang Yanfang, Shi Zhiqiang, et al. Numerical simulation of temperature and flow field in laser cladding based on elliptic heat source model [J]. Applied Laser, 2017,37(2):218-222. (in Chinese)
 李豪,王彦芳,石志强,等.基于椭圆热源模型的激光 熔覆温度场与流场数值模拟[J].应用激光,2017,37 (2):218-222.
- [19] Huang Yong, Ma Wentao, Zhang Haiming, et al. Numerical simulation of temperature field and deformation research in laser cladding repair process of slender shaft parts [J]. Electromechanical Equipment, 2017, 34(4): 28-34, 37. (in Chinese)
 黄勇,马文涛,张海明,等. 细长轴零件激光熔覆修复 过程温度场数值模拟及变形研究[J]. 机电设备,
- [20] Jiang Sansheng, Liang Lishuai, Shu Fengyuan. Optimization of laser cladding Co-base alloy cladded on 45 steel surface[J]. Materials Reports. 2020, 34(S1):448-451. (in Chinese)
 蒋三生,梁立帅,舒凤远. 45 钢表面激光熔覆 Co 基合 金覆层工艺优化[J]. 材料导报, 2020, 34(S1):448-451.

2017,34(4):28-34,37.

- [21] Tao Chunhua. Basic experiment and simulation of laser cladding forming of metal powder[D]. Dalian: Dalian U-niversity of Technology, 2008:17-22. (in Chinese) 陶春华. 金属粉末激光熔覆成形的基础试验与模拟
 [D]. 大连:大连理工大学机械工程学院, 2008: 17-22.
- [22] Essam R I Mahmoud, Sohaib Z Khan, Muhammad Ejaz. Laser surface cladding of mild steel with 316L stainless steel for anti-corrosion applications [J]. Materials Today: Proceedings, 2020;1710 - 1716.
- [23] Zhao Yu, Wang Song, Fu Jianwei, et al. Effect of laser remelting process on YCF101 coating quality[J]. Laser & Infrared, 2019, 49(1):35-41. (in Chinese)
 赵雨, 王松, 付建巍, 等. 激光重熔工艺对 YCF101 涂层 质量的影响[J]. 激光与红外, 2019, 49(1):35-41.