文章编号:1001-5078(2024)02-0179-06

· 激光器技术 ·

LD 环状侧面均匀泵浦 Nd:YAG 激光振荡器

韩昌昊¹,穆 宇¹,罗 辉²,韩 隆¹,方 聪¹,王思博¹,魏 磊¹ (1. 中国电子科技集团公司第十一研究所,北京 100015;2. 北京航天控制仪器研究所,北京 100039)

摘 要:激光二极管(Laser Diode,LD)环状侧面均匀泵浦的激光振荡器具有结构简单、光束质 量高、单脉冲能量大等特点,常常在高能脉冲固体激光器中作为主振荡功率放大(MOPA)结构 的振荡器,一直是国内外科研人员研究的重要方向之一。本论文通过 Zemax 软件对不同激光 二极管排列方式以及不同工作物质吸收系数对吸收光场的影响的进行了仿真。基于仿真结 果,设计了一种 20 个 bar 条串联的环状侧面泵浦结构,以提高晶体吸收的均匀性。通过该环 状侧泵结构,结合超高斯非稳腔设计,搭建了一种双棒串接激光振荡器进行实验研究。该振荡 器实现了在 100 Hz 重复频率下,单脉冲能量为 496 mJ、脉冲宽度为 12.4 ns 的 1064 nm 激光输 出,光束质量优于 9 mm · mrad,光 - 光转换效率为 18.5 %。并且该振荡器可以维持光轴稳定 不变的同时,实现 20 ns 脉宽以内变档可调。实验结果证明了该环状侧面均匀泵浦结构可靠 有效,为 MOPA 结构振荡器选取提供了一种有效的方案。

关键词:激光二极管;环状侧面泵浦;Nd:YAG;振荡器;大脉冲能量

中图分类号:TN248;0437 文献标识码:A DOI:10.3969/j.issn.1001-5078.2024.02.003

LD ring side-pumped Nd : YAG laser oscillator

HAN Chang-hao¹, MU Yu¹, LUO Hui², HAN Long¹, FANG Cong¹, WANG Si-bo¹, WEI Lei¹

(1. the 11th Research Institute of CETC, Beijing 100015, China;

2. Beijing Institute of Aerospace Control Devices, Beijing 100039, China)

Abstract: The laser diode(LD) ring uniformly side-pumped laser oscillator has the characteristics of simple structure, high beam quality and large single pulse energy, etc and it is often used as the oscillator stage of main oscillation power amplification(MOPA) structure of the oscillator in high-energy pulsed solid-state lasers, which is an important direction of the domestic and foreign researchers' research. In this paper, the influence of different arrangement of laser diodes and different absorption coefficients of working materials on the absorbed light field is simulated by Zemax software. Based on the simulation results, a ring side-pumped structure with 20 bar strips in series is designed to improve the uniformity of crystal absorption. Through the ring side-pumped structure, with the unstable resonator design, a laser oscillator is built for experimental study. A 1064 nm laser with a single pulse energy of 496mJ and a pulse width of 12. 4 ns is achieved at a repetition rate of 100 Hz, with a beam quality better than 9mm \cdot mrad and an optical-optical conversion efficiency of 18. 5%. Moreover, the oscillator can maintain the stability of optical axis at the same time, to realize 20 ns pulse width the within variable gear adjustable. The experimental results show that the ring side-pumped structure.

 $Keywords: {\tt laser \ diode; annular \ side \ pumping; Nd: YAG; oscillator; high \ pulse \ energy}$

1 引 言

LD 侧面泵浦 Nd:YAG 晶体激光器具有结构简

单、光束质量高、单脉冲能量大等特点,常常在高能脉冲固体激光器中作为 MOPA 结构的振荡器,是实

现高脉冲能量固体激光器的一种重要方式^[1-5]。 MOPA 结构的大能量激光器通常会存在多级放大后 激光光束质量的严重退化,科研人员会通过在放大 级间采用受激布里渊散射相位共轭镜(SPS-PCM)、 空间滤波器(spatial filter,SF)等方式来改善光束质 量^[6-7]。但在实际工程应用中,采用过多的光学元 件会使系统可靠性降低,并且会使激光器结构更加 庞大、冗杂。而单纯的采用小能量、高质量的种子源 也需要在后续光路种加入预放大系统,同样会使得 激光器系统更加复杂。所以,优化泵浦结构,提高泵 浦均匀性,提高大能量激光振荡器的光束质量,是实 现高能脉冲激光器小型化及工程化的关键。

LD 泵浦方式主要分为端面泵浦和侧面泵浦两 种。其中端面泵浦拥有更高的光耦合效率,更容易 实现高光束质量的激光输出,但是其泵浦光耦合系 统比较复杂,且不容易输出高功率激光。相较于端 面泵浦,侧面泵浦结构更为简单,具有高可靠性及紧 凑性的优点,但是其泵浦光是沿晶体径向注入,存在 泵浦光分布不均匀、工作物质热效应严重等问题,导 致输出激光的光束质量变差。因此,国内外研究人 员对侧面泵浦构型的光场均匀性进行了大量的研 究^[8-11],通过对侧面泵浦结构、晶体掺杂浓度优化 设计,最大程度上提高泵浦的均匀性。

基于此,科研人员对侧面均匀泵浦的激光振荡 器进行了大量研究。2007年,中国科学院上海光学 精密机械研究所的漆云凤^[12]等人采用均匀紧凑的 侧面泵浦系统,研制了一种高脉冲能量电光调 Q Nd:YAG陶瓷激光振荡器。腔镜采用平面高反镜和 平面耦合输出镜(T=70%),泵浦模块采用 LD 阵 列从九个方向泵浦单个 Nd:YAG 陶瓷棒,每个 LD 叠阵由5个准连续 bar 条组成。实现了在 100 Hz 重 复频率下,单脉冲能量为50 mJ激光输出,脉冲宽度 为10 ns,光-光效率约7.2%。2011年,清华大学 的柳强^[13]等人报道了一种工作在100 Hz 重复频率 下大模体积的非稳腔结构,采用变反射率反射镜 (VRM) 和 高 反 射 凸 面 镜 (HRM) 作 为 腔 镜 补 偿 Nd:YAG晶体棒的热效应,泵浦模块设计为 LD 阵 列从五个方向对直径为8 mm 的晶体棒进行泵浦。 实现了单脉冲能量 388 mJ 的 1064 nm 激光输出,脉 冲宽度为 15 ns, 光束质量 $M_x^2 = 3.2, M_y^2 = 2.8, \mathcal{H} -$ 光效率约 12.9 %。2017 年,中国南方工业研究 院^[14]展示了一种高能纳秒级 MOPA 结构激光器。 其主振荡器采用非稳腔结构,输出耦合镜为中心反 射率*R* = 35 % 的 VRM,泵浦模块采用 LD 阵列从 7 个方向侧面泵浦单个 Nd : YAG 晶体棒。该振荡器 结构在 50 Hz 重复频率下,单脉冲能量最高可达到 180 mJ,脉冲宽度为 10.7 ns,光 - 光效率约为 13.1 %,近场模式接近超高斯平顶分布。2019 年, 中国工程物理研究院应用电子研究所^[15]报道了一 种重复频率为 400 Hz、单脉冲能量高达 1.04 J 的 激光振荡器。振荡器采用 LD 阵列从九个方向进 行侧面泵浦 Nd : YAG 晶体,并利用双棒串接的方 式进行热补偿,耦合输出镜采用中心反射率为 *R* = 35 % 的 VRM。但是由于其极高的单脉冲能量及 热效应的影响,无法在直接在振荡器中实现高光 束质量和窄脉宽的输出。

本文主要介绍了一种应用于高能脉冲固体激光 器中的激光振荡器,该振荡器采用了 LD 侧面均匀 泵浦 Nd:YAG 晶体的泵浦结构,并结合超高斯非稳 腔结构实现大能量输出。其中,侧面泵浦结构没有 采用传统的线阵或者面阵的泵浦方式,而是直接采 用了 bar 条串联的环形集成结构,提高了泵浦均匀 性及效率。通过 Zemax 软件进行侧泵均匀性的仿 真分析,基于仿真结果设计了 20 向侧泵结构的激光 振荡器,实现了 100 Hz 重复频率下,496 mJ 的激光 输出,光光效率约为 18.5 %,脉冲宽度为 12.4 ns, 光束质量优于 9 mm · mrad。并且该振荡器可以维 持光轴稳定不变的同时,实现 20 ns 脉宽以内能量 变档可调,对激光振荡器工程化应用由一定意义。

2 LD 侧面均匀泵浦结构仿真

侧面泵浦结构具有结构简单、性能稳定等优点, 相对与端面泵浦更具备实现小型化激光器的潜力。 但是由于其泵浦光在延径向注入晶体时,会出现晶 体内外吸收不均匀,导致热效应严重,从而影响光束 质量。为解决泵浦不均匀导致的光束质量退化等问 题,采用 Zemax 软件对不同侧面泵浦条件下光场吸 收情况进行仿真,从而为优化激光器设计提供理论 基础。

2.1 不同泵浦方向数下的光场均匀性

由于不同方向的泵浦光在进入晶体棒后会存在 交叠,所以激光二极管在晶体棒侧面排列方式的对 其光场分布的影响较大。图1为不同泵浦方向数下 的吸收光场的对比图,其中,晶体尺寸、泵浦距离、吸收系数均相同,图1(a)、(b)、(c)、(d)分别为泵浦方向为3向、5向、9向、20向时的吸收光场。可以看出,随着泵浦方向数目的增加,晶体内吸收光场分布会逐渐呈中心对称形状,光场的均匀性会随之提高。这种情况应当是由于激光二极管所发射激光的发散角是固定的,通过从多个方向入射能够增加泵 浦头内激光的空间交叠效率,从而提高晶体对泵浦光吸收的均匀性。

在选择激光晶体时,往往根据实际情况选择适 合的掺杂浓度的晶体,不同浓度晶体的吸收系数差 异较大,对晶体内泵浦均匀性也有较大影响。图 2 是采用 20 向的泵浦结构对在不同吸收系数下的吸 收光场的对比图。由图 2 可以看出,吸收系数 α = 4 cm⁻¹时明显优于其他两种,当激光晶体的吸收系 数较小时,晶体棒中间的吸收强度明显要高于两端, 这种情况下有利于激光基模的振荡,但是易造成中 心功率密度过高损坏光学器件。当提高激光晶体的 吸收系数时,晶体边缘吸收的泵浦光能量越来越强,

(c) $\alpha = 2 \text{ cm}^{-1}$

(a) $\alpha = 8 \text{ cm}^{-1}$

图 2 不同吸收系数下的吸收光场

Fig. 2 Absorbed light field under different absorption coefficients

这种情况下激光的模式分布会逐渐失配。综合考虑 各因素,在泵浦结构设计时应当选取晶体吸收系数 较小的方案,更加有利于泵浦的均匀性。

3 实验装置

根据仿真结果表明,随着泵浦方向的增加,光场 的均匀性会随之提高。故本研究采用了 20 个激光二 极管 bar 条直接串联的环状结构进行侧面均匀泵浦, 环状侧面泵浦结构如图 3 所示。整个泵浦模块包含 了沿轴向等间距分布的 10 个环状结构,总峰值功率 最高为 20 kW。这种 bar 条串联的环状结构的好处在 于可以使 bar 条在侧面进一步集成化,使泵浦光入射 方向数增加,尽可能提高泵浦的均匀性。根据仿真结 果计算,激光晶体选择了掺杂浓度为 0.6 at % 的 Nd:YAG晶体,晶体直径为 10 mm,长度 154 mm。

图 3 LD 侧面泵浦模块截面图

Fig. 3 Cross section schematic of the LD side-pumped module

LD 侧面均匀泵浦 Nd:YAG 振荡器实验装置如 图 4 所示,谐振腔总腔长 780 mm。其中,M1 为镀有 1064 nm 高反膜的平 – 凹镜,反射率大于 99 %。偏 振片 P1 作为起偏器,以保证水平线偏振激光输出。 L1、L2 为负透镜,*R*1 为 90°石英旋光器。耦合输出 镜 OC 为可变反射率的弯月镜,中心透过率为 70 %,曲率半径 *R* = ±1000 mm,使振荡器获得大体 积、模式分布光滑均匀的基横模输出。为消除自发 放大辐射(ASE)振荡,Nd:YAG 晶体两端面设计为 呈 1°梯形斜角的结构。采用升压式电光调 Q 的方 式,采用 BBO 双晶作为电光 Q 开关,双晶总长 40 mm。

虽然采用均匀泵浦的方式可以一定程度上降低 热效应,但是由于固有的量子损耗,在晶体中的热效 应是不可避免的。在单泵浦模块测试中,当注入 2.31 J泵浦光时,输出激光光束出现明显的热退偏, 所以选择了双棒串接的方式进行补偿,并在晶体棒 之间加入 90°石英旋光器以补偿热致双折射。用 He-Ne 准直光对重复频率 100 Hz 时,对注入不同泵 浦光能量的热透镜进行测量,晶体的热透镜焦距随 输入泵浦光能量的变化情况如图 5 所示。考虑到调 Q 后热透镜效应可能会加重,在腔内加入两个负透 镜 L1(*R* = -2000 mm),L2(*R* = -2500 mm),用于 补偿晶体棒中的热透镜效应。

4 实验结果

输出耦合镜的参数设计对激光振荡器的输出功 率有重要影响。实验中针对中心透过率分别为 60%、70%、80%的耦合输出镜进行对比实验,在 重复频率为100Hz、泵浦脉宽为220 µs时,输出激 光单脉冲能量随注入泵浦光能量的变化关系如图6 所示。从图6可以看出,输出激光单脉冲能量和输 入泵浦光能量呈线性关系增长,并且没有出现饱和 的趋势。

图 7 是当注入泵浦光能量为 2.31 J 时的近场 光斑,虽然中心部分略强,但径向分布相对均匀,说 明侧泵结构设计有效。可以通过进一步提高晶体掺 杂浓度优化侧泵结构设计。也可通过对可变反射率 反射镜(Variable Reflectivity Mirrors,VRM)的膜层进 行优化设计,改善光斑形态,使近场激光接近平顶分 布。将注入泵浦光能量增加到 2.68 J 时,采用套孔 法测量激光光束质量,光束质量优于 9 mm · mrad。

图 7 近场光斑分布图 Fig. 7 Near-field spot distribution

当注入泵浦光能量为 2.68 J 时,得到单脉冲能 量为 496 mJ,此时光 - 光效率为 18.5 %,与国内同 类侧面泵浦大能量激光振荡器进行对比(文献[1] ~文献[5],文献[12]~文献[14]),光 - 光效率处 于领先水平,说明该环形侧泵设计对效率提升存在 明显效果。使用光电探测器和数字示波器测得激光 振荡器激光脉冲波形如图 8 所示,激光脉冲宽度为 12.4 ns。当继续提高泵浦光能量时,腔内热效应会 逐渐明显,导致光束质量恶化,光斑出现畸变。当注 入泵浦光能量大于 3.2 J 时,热退偏效应会导致 Q 开关的工作效率下降,激光脉宽不再稳定。

Fig. 8 Single-pulse waveform after electro-optical Q-switched

为实现输出激光能量变档可调,同时保证激 光光轴稳定,本文采用改变Q延时的方式来进行 能量变档。因为注入的泵浦光能量不变,所以晶 体热分布处于一个稳定的状态,光轴可以近乎保 持稳定状态。在100 Hz 重复频率下,注入泵浦光 能量为2.31 J时,激光单脉冲能量随Q延迟变化 如图9所示。从图9可以看出,在Q延时和泵浦 脉宽完全匹配时,所得到的单脉冲能量不是最高 的,这种现象可能是Q驱动与泵浦电源等器件细 小的误差导致的。随后对Q延时在260 µs 和 310 µs时激光脉宽进行测量,分别为16 ns 和 18.4 ns。并对不同Q信号延时状态的光轴位移量 进行测量,不同Q延时下激光光轴的位移量不大 于20 µrad,说明改变Q延时对光轴稳定性影响很 小,该激光振荡器能够在光轴稳定下实现脉宽 20 ns以内的脉冲能量变档可调。

本文主要介绍了一种应用于高能脉冲固体激光 器中的激光振荡器,该振荡器采用了 LD 侧面均匀 泵浦 Nd:YAG 晶体的泵浦结构,并结合超高斯非稳 腔结构实现大能量输出。其中,侧面泵浦结构没有 采用传统的线阵或者面阵的泵浦方式,而是直接采 用了 bar 条串联的环形集成结构,提高了泵浦均匀 性及效率。通过 Zemax 软件进行侧泵均匀性的仿 真分析,基于仿真结果设计了 20 向侧泵结构的激光 振荡器,实现了 100 Hz 重复频率下,496 mJ 的激光 输出,光光效率约为 18.5 %,脉冲宽度为 12.4 ns, 光束质量优于 9 mm·mrad,并可以实现脉宽 20 ns 以内的脉冲能量变档可调。实验证明了该侧泵结构 可靠有效,为 MOPA 结构振荡级选取提供了一种有 效的方案。

参考文献:

[1] Sun Weina, Wang Weili, Bi Guojiang, et al. LD pumped

laser system of high frequency and high energy [C]//Chinese Optical Society, The Chinese Institute of Electronics, Proceedings of the 17th National Laser Academic Conference, 2005:28 - 30. (in Chinese)

孙维娜,王伟力,秘国江,等.激光二极管抽运高重复 频率大能量激光器[C]//中国光学学会,中国电子学 会.第十七届全国激光学术会议论文集.科学出版社, 2005:28-30.

- [2] Tong L, Zhao Z, Cui L, et al. 400 Hz pulsed single-longitudinal-mode Nd : YAG laser with more than 100 mJ pulse energy and good beam quality [J]. Laser Physics, 2011,21(1):52-56.
- [3] Zhao Hu, Yan Xinjie, Deng Mingfa, et al. All solid-state large energy Nd : YAG laser with electro-optical Q-switched pulse sequence[J]. Laser & Infrared, 2016, 46 (7):819-822. (in Chinese)
 赵虎,延新杰,邓明发,等. 大能量电光调Q脉冲序列 输出全固态 Nd:YAG 激光器[J]. 激光与红外,2016, 46(7):819-822.
- [4] Chen Yuejian, Pang Yu, Zhou Tangjian, et al. Acousto-optic Q-switch Nd: YAG laser with 10 kHz repetition rate and 425.6 mJ pulse energy [J]. Chinese Journal of Lasers, 2019, 46(7): 34 38. (in Chinese)
 陈月健, 庞毓, 周唐建, 等. 10 kHz, 425.6 mJ 声光调 Q Nd: YAG 激光器[J]. 中国激光, 2019, 46(7): 34 38.
- [5] Li X, Xu H, Yan R, et al. High stability 500 Hz MOPA system for planar laser-induced fluorescence [J]. Infrared Physics & Technology, 2022, 123:104115.
- [6] Kang Z, Fan Z, Huang Y, et al. High-repetition-rate, highpulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM [J]. Optics Express, 2018,26(6):6560-6571.
- [7] Ding J, Yu G, Fang C, et al. High beam quality of nanosecond Nd : YAG slab laser system with SBS-PCM[J]. Optics Communications, 2020, 475:126273.
- [8] Li Jiuxi, Jin Yujian, Wang Pengfei. Analysis of effect of pumping structure on gain distribution characteristics in side-pumped working medium [J]. Laser & Infrared, 2011,41(8):867-870. (in Chinese)
 李久喜,金煜坚,王鹏飞. LD 侧面泵浦结构对增益分 布特性的影响分析[J]. 激光与红外,2011,41(8):867-870.
- [9] Chen Xinyu, Wang Di, Wang Chao, et al. Effect of Nd³⁺ doping concentration on the output characteristics of Nd : YAG laser without water-cool[J]. Infrared and Laser

Engineering,2011,40(5):817-821.(in Chinese) 陈薪羽,王迪,王超,等.Nd³⁺掺杂浓度对无水冷 Nd:YAG激光器输出特性的影响[J].红外与激光工 程,2011,40(5):817-821.

- [10] Li Long, Zhang Qiujuan, Zhang Chunling, et al. Transient thermal effect of Nd:YAG ceramics with pulsed laser diode bar side-pumped[J]. Infrared and Laser Engineering, 2021,50(11):158-164. (in Chinese)
 李隆,张秋娟,张春玲,等.脉冲激光二极管巴条侧面 泵浦 Nd:YAG 陶瓷瞬态热效应研究[J]. 红外与激光 工程,2021,50(11):158-164.
- [11] Yang Tianli, Yang jing, Zhou Wangzhe, et al. 100 kHz high power high beam quality nanosecond laser oscillator
 [J]. High Power Laser and Particle Beams, 2023, 35(7): 52 58. (in Chinese)

杨天利,杨晶,周王哲,等.100 kHz 高功率高光束质量

纳秒激光振荡器[J].强激光与粒子束,2023,35(7): 52-58.

- [12] Qi Y, Zhu X, Lou Q, et al. High-energy LDA side-pumped electro-optical Q-switched Nd : YAG ceramic laser [J]. Journal of the Optical Society of America, B, 2007, 24 (5):1042-1045.
- [13] Liu Q, Liu J, Gong M. Dual-rod, 100 Hz, 388 mJ nanosecond Nd : YAG oscillator. [J]. Applied Optics, 2011, 50 (8):1186.
- Li C, Lu C, Li C, et al. 2. 36 J, 50 Hz nanosecond pulses from a diode side-pumped Nd : YAG MOPA system [J]. Optics Communications, 2017, 394:1-5.
- [15] Jin Q, Pang Y, Jiang J, et al. A high-beam-quality Nd : YAG rod laser with a VRM and spherical aberration compensation at 400 Hz [J]. Optik-International Journal for Light & Electron Optics, 2019, 181:252 - 257.