文章编号:1001-5078(2024)06-0843-09

·综述与评论·

液相超声法制备金属硫化物量子点的研究进展

张泰玮^{1,2,3},胡 ^{坤1,2,3},李国彬^{1,2,3},夏溢坪^{1,2,3},杨 奥^{1,2,3},李学铭¹,唐利斌^{2,3},杨培志¹ (1. 云南师范大学 能源与环境科学学院 可再生能源材料先进技术与制备教育部重点实验室,云南 昆明 650500; 2. 昆明物理研究所,云南 昆明 650223;3. 云南省先进光电材料与器件重点实验室,云南 昆明 650223)

摘 要:量子点(Quantum Dots,QDs)是一种零维纳米材料,其尺寸小于或接近激子玻尔半径。随着纳米技术的发展,金属硫化物量子点因其独特的光学、电学和磁学性质而受到广泛关注,可将其分为过渡金属硫化物量子点(TMD QDs)、Ⅱ-VI族量子点及Ⅳ-VI族量子点等。超声法制备量子点具有高效、环保、易于控制和可扩展性等优点,逐渐成为制备金属硫化物量子点的重要技术之一。金属硫化物量子点有着别于传统体相材料的优异光电特性,在近些年里,其优越而又独特的性能使得在更多的领域中得到了深入的研究和应用,如光电器件、生物成像、光催化等。本文综述了超声法制备不同金属硫化物量子点的研究进展,并对其性质和应用进行了归纳和总结。最后,对超声法制备金属硫化物量子点进行了展望。

关键词:量子点;金属硫化物;超声法;光电特性

中图分类号:0431.2;TN29 文献标识码:A DOI:10.3969/j.issn.1001-5078.2024.06.001

Advances in the preparation of metal sulfide quantum dots by liquid phase ultrasonic method

ZHANG Tai-wei^{1,2,3}, HU Kun^{1,2,3}, LI Guo-bin^{1,2,3}, XIA Yi-ping^{1,2,3}, YANG Ao^{1,2,3}, LI Xue-ming¹, TANG Li-bin^{2,3}, YANG Pei-zhi¹

(1. School of Energy and Environmental Sciences, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China;

2. Kunning Institute of Physics, Kunning 650223, China; 3. Yunnan Key Laboratory of Advanced Photoelectric Materials & Devices, Kunning 650223, China)

Abstract:Quantum Dots (QDs) are zero-dimensional nanomaterials with dimensions less than or close to the exciton Bohr radius. With the development of nanotechnology, metal sulfide QDs has attracted wide attention due to their unique optical, electrical and magnetic properties, which can be classified into transition metal-disulfide QDs (TMD QDs), II-VI QDs and IV-VI QDs. The ultrasonic method for the preparation of QDs has the advantages of high efficiency, environmental protection, easy control and scalability, and has gradually become one of the important techniques for the preparation of metal sulfide QDs. Metal sulfide QDs have excellent optoelectronic properties that are different from those of traditional bulk materials, and their superior and unique properties have led to in-depth research and applications in more fields in recent years, such as optoelectronic devices, bio-imaging, and photocatalysis. In this paper, an overview of the preparation of different metal sulfide QDs by ultrasonication is reviewed, and their properties and applications are summarized and concluded. Finally, an outlook on the preparation of metal sulfide quantum dots by ultrasonication is given.

Keywords: quantum dots; metal sulfide; ultrasonics; photoelectric properties

基金项目:云南省科技厅人才与平台计划项目(No. 2022205AC160026);"春城计划"高层次人才引进培养工程项目 (No. 2022SCP005)资助。

作者简介:张泰玮,男,硕士研究生,主要从事光电材料与器件方面的研究。E-mail:ynnuztw@163.com 通讯作者:唐利斌,男,博士,正高级工程师,主要从事光电材料与器件方面的研究。E-mail:scitang@163.com 收稿日期:2023-11-06;修订日期:2024-01-03

1 引 言

量子点(Quantum Dots,QDs)是一种尺寸小于或 接近激子玻尔半径的零维纳米材料,一般为球形,直 径在1~100 nm 之间。QDs 由于具有独特的量子尺 寸效应、量子限域效应、表面效应以及宏观量子隧道 效应,会表现出不同于块体材料的物理及化学性质, 如发光波长可调、光电转换效率高、光稳定性好等。 随着研究和应用的不断拓展,量子点已成为当前材料 领域研究的热点之一,在太阳电池、光电探测器、发光 二极管及激光器等^[1-7]领域具有广泛的应用前景。

量子点的制备通常分为"自上而下"和"自下而 上"两类。前者包括超声、激光烧蚀、电化学刻蚀、 电子束光刻等[8-11]方法,它们主要是通过对大尺寸 本体材料进行剥离,来获得满足特定尺寸和性能要 求的纳米材料。后者包括水热/溶剂热法、微波合成 法、模板法、热解法、湿化学法等^[12-16],这些方法是 利用原子或分子间的相互作用合成相对复杂的结构 体系,通过反应条件来控制晶体的尺寸大小和形貌 结构。其中,属于"自上而下"的超声法因工艺简 便,成本低廉,高效可量产,已发展为一种重要的量 子点制备手段。该方法利用超声波对液相反应体系 进行高频振荡,使液相介质发生膨胀,产生空泡,并 在高压、高温、强机械效应等作用下释放出能量,从 而破坏反应前驱物内部的化学键和分子结构,促进 前驱物剥离。通常,为了提高量子点的制备效率,研 究人员会采用机械方法对块体前驱物进行粉碎预处 理,然后再采用超声法进行剥离,以便获得尺寸分布 范围较窄的量子点材料。

硫化物具有宽能隙、高电子迁移率、良好的光学 特性和热稳定性等优点,在能源、材料、测量和催化 等多个领域发挥着重要作用。金属硫化物量子点具 有尺寸可调性、可调光学性质、高量子效率和高化学 稳定性等特点,使得其在光学器件、光电探测、生物 医学等领域^[17-19]具有非常广阔的应用前景。通过 选择制备方案,可以制备出具有高性能和应用广的 金属硫化物量子点材料,为材料科学领域应用提供 了前景。因此,成功制备出性能优异的金属硫化物 量子点,是未来材料领域的一项重要研究方向。

本文将着重阐述超声法制备不同金属硫化物量 子点的研究状况,并对其在各个方面的应用进行相 应的分析和概述。

2 超声法制备金属硫化物量子点

采用超声剥离制备量子点是一种基于溶液的简 便方法,其原理如图1所示(以MoS2为例):具有层 状结构的 MoS₂ 体材料在超声波作用下,弱的层间 作用力相较于强的层内作用力优先被打破,导致层 状结构从块体上剥离,从而得到二维片状 MoS₂,随 着超声作用不断进行,MoS2的层内作用力也逐渐被 打破,于是从大片形成小片,小片再形成颗粒,最后 通过离心分离,就能得到高纯度的 MoS, QDs。目 前,液相超声法在纳米材料领域已经得到了广泛应 用,并取得了良好效果。此外,通过对反应前驱物进 行适当的切割、破碎等预处理,可以进一步提升超声 剥离的效果。如:Hao 等人^[20]先采用超微切片法切 割块状二维前驱体(MoS2、WS2、SnS2、TaS2及TiS2 等),然后进行液相超声剥离,形成量子点。整个制 备过程中没有引入其他杂质元素,因而可以制备得 到高质量的量子点。Zhou 等人^[21]采用先研磨 TaS₂ 粉末后超声的方法制备了单分散晶粒尺寸约为 3 nm的 TaS, QDs,并通过调节离心速率和时间,得到 了尺寸可控的 TaS, QDs,该研究证明了液相超声是 制备 TaS, QDs 的一种简便高效的手段。

Fig. 1 Mechanism diagram of QDs prepared by ultrasonic method with ${\rm MoS}_2$ as an example

2004 年,单层石墨烯被成功剥离掀起了二维材料的研究热潮,以 MoS₂为代表的二维过渡金属硫化物由于具有特殊的能带结构、半导体或超导性质以及优异的光学、光电等特性,在纳米电子器件和光电子学等诸多领域具有广阔的应用前景,引起了广大研究者们的兴趣,成为了近年来低维功能材料领域研究的热点。随着少量层或单层的二维过渡金属硫化物纳米片横向尺寸进一步减小形成量子点,表现出更强的量子限域效应和边缘效应,而由此带来的理化性质增

强为其在发光、显示、催化、生物医学等领域的应用引 入了更多的优异特性。Zhang 等人^[22]采用研磨和超 声处理不同块状过渡金属硫化物粉末,在室温下制备 出量子点,图2(a)、(b)和(c)分别是其中 ReS, QDs、 WS₂ QDs TaS₂ QDs 的 TEM 图,可以看到三种量子点 分散性均良好,尺寸大小依次约为1.8 nm、3.9 nm、 2.9 nm。Zhang 等人^[23]在液氮中对层状材料(MoS₂、 WS,、石墨烯)进行低温预处理,然后在 IPA 和 H₂O 的 混合溶剂中进行超声剥离,图2(d)是 MoS, QDs 的 TEM 图,右上角是粒径直方分布图,可看到 MoS, QDs 的平均尺寸为 1.8 nm, 图 2(e) 是 MoS₂ QDs 修饰的 MoS₂ 纳米片(CL-MoS₂)的 HRTEM 图像,可以看到 MoS, QDs 穿插在单层 MoS, 的边缘和内表面。为了 可以在短时间内从大块层状材料粉末中直接在分散 剂中制备量子点, Wang 等人^[24]引入了一种低温介导 的预处理的方法,将块状层状材料粉末在液氮中浸 泡。然后,将粉末分散在 IPA/H,O 混合溶剂中,再进 行超声处理制备出相应的量子点,最后通过离心和真 空过滤,将 QDs 从相对较大的纳米片中分离出来。 为提高 QDs 的产率和浓度,该团队循环进行低温预 处理和超声处理步骤。图 2(f) 是经过一系列循环 处理得到的 WS_2 QDs 的 TEM 图。可观察到 WS_2 QDs 呈现出圆形形状,直径分布相对较窄,范围为 2.18~5.99 nm,最可几直径为 3.73 nm。这种低 温剥离技术制备量子点的方法不仅适用于 WS,, 对其他层状金属硫化物也适用。该团队还成功制 备了 MoS,、二硫化钛(TiS,)和二硫化铌(NbS,)等 二维材料量子点,图2(g)和(h)分别为TiS₂QDs 和 NbS₂ QDs 的 AFM 图。Fu 等人^[25]利用水热法合 成层状 SnS,,然后通过超声剥离层状 SnS,获得 SnS₂ QDs,图2(i) 是在11000 rpm 转速下得到的 SnS₂ QDs 的 TEM 图,尺寸主要分布在 2~4 nm,随 着转速的增加,悬浮液逐渐变成无色。

液相超声法制备金属硫化物量子点是一种简 单、高效、环保的方法,可以制备出具有优异光学性 能的量子点材料。该方法利用超声波作用,破坏层 间作用力,得到具有较高量子产率和优异光学性能 的量子点。此外,该方法还具有可控性强、反应时间 短、操作简便等优点,为量子点材料的制备提供了新 的思路和技术支持。表1列举了近年来超声法制备 金属硫化物量子点的部分研究成果^[20-44],可以发 现,分散剂、超声功率和反应时间等因素对金属硫化 物量子点的尺寸具有显著影响。其中,分散剂的种 类和性质直接影响前驱物的剥离程度,因此同种前 驱物在不同分散剂中剥离得到的量子点具有不同的 尺寸大小和光学性质。不同的超声功率和时间以及 离心速度和时间也会影响量子点尺寸分布。在应用 研究中,需要选择尺寸均匀、吸收强度高的量子点, 以突出其独特的光学性质和应用优势。所以,深入 研究量子点在不同条件中的表现,探究其结构与性 质之间的关系,将有助于进一步发挥其应用和开发 潜力。总的来说,表格中提供的数据为制备量子点 的研究提供了有价值的参考,在实际应用中,需要根 据实验需求和条件进行合理的优化,以获得最佳的 制案和量子点性质。

3 超声法制备的量子点的应用

在量子点的应用中,量子点的尺寸直接影响着 其性能,因为量子点的尺寸决定了能隙大小、能带结 构等关键特性,进而影响其在生物成像、荧光探针、 发光二极管等方面的应用表现。因此,在液相超声 剥离的过程中,需要通过反应条件的选择和实验优 化,获得具有理想尺寸分布和粒径的量子点,以满足不 同应用领域对量子点的不同需求。例如,较小的超声 功率可以获得较大的量子点(3~6 nm)并应用于生物 成像,较大的离心转速可以获得较小的量子点(1.4~ 3.5 nm)并应用于光催化剂和激光增益介质。量子 点的吸收波长也是决定其应用的一个重要因素,不 同材料在各个波长阶段的吸收强度是有差异的,因 此将所需的应用与正确的材料相匹配是很重要的。 一般来说,一种材料的吸收波长范围越宽,光子利用 率越高,所能应用的领域就越多。随着量子点技术 的不断发展,液相超声法制备的金属硫化物量子点 在应用方面也将不断拓展,为人类社会的发展做出 更大的贡献。

3.1 催化应用

随着环境污染和能源危机的日益严重,寻求一 种高效、清洁、可持续的能源和环境治理技术成为了 当今社会亟待解决的问题。在这一背景下,催化技 术作为一种绿色、高效的技术手段,逐渐受到广泛关 注。其中,光催化和电催化作为两种重要的催化技 术,由于具有能源高效、无毒副产、易于操作等优点, 成为了当前研究的热点和前沿。光催化和电催化技 术的应用范围涉及空气净化、水处理、新能源开发等 多个领域,具有广阔的应用前景。罗丹明 B(RhB) 是一种常见的合成染料,由于其难以控制排放和生 物降解,对水生态造成了严重污染。因此,将 RhB 作为污染物,来评估催化剂的光催化能力具有重要 的研究意义。Zhang 等人^[35] 通过超声法从 MoS, 纳 米片剥离出 MoS, QDs,并通过改变 MoS, QDs 的体 积(0.1 ml,0.5 ml,1 ml)利用水解法制备出不同浓 度的 MoS, QDs/BiOBr 异质结,研究其对 RhB 光催 化应用,在可见光照射下 MoS, QDs/BiOBr 的光催化 机理如图 3(a) 所示。图 3(b) 是 MoS, QDs/BiOBr 异质结对 RhB 的光催化降解,可以看出,在没有光 催化剂的情况下, RhB 的自降解可以忽略不计, 所 有 MoS, QDs/BiOBr 异质结构与纯 BiOBr 相比,均表 现出优异的光催化性能,这是由于 MoS₂ QDs/BiOBr

异质结构的协同效应所致。在可见光照射下, MoS, QDs/BiOBr-2 对 RhB 的最佳降解率可达 99 %,时间 为50 min。随着 MoS₂ QDs 溶液的体积增加, MoS₂ QDs/BiOBr 异质结构的光催化活性会降低,这可能 源于过量 MoS_2 QDs 的"阻塞效应"。图 3(c) 是 MoS₂ QDs/BiOBr 光催化降解 RhB 时的循环测试,可 以看到,经过四次循环测试, RhB 的降解效率没有 明显下降,仍然保持在90%以上,说明 MoS, QDs/ BiOBr 异质结光催化剂具有良好的可重复使用性和 高稳定性。Khabiri 等人^[31]通过超声技术将合成的 MoS₂前驱物制备出 MoS₂ QDs,并与 SnS₂ 纳米片构 建了异质结构(SnS,@MoS, QDs),图3(d)是其异质 结的光催化活性示意图。为评估其光催化性能,对 所制备的材料进行亚甲基蓝(MB)的光催化应用测 试。图 3(e) 是异质结的吸收光谱, 可以看到吸收峰 的强度随着辐照时间的增加而降低,表明 MB 随着 时间的推移而被降解,120 min 后,几乎95.0%的 MB 被降解。图 3(f) 是光降解效率图, 大约 10 min 后,约87.0%的MB染料被降解,120min后,MB分 子几乎被完全分解,表明 SnS₂@ MoS₂ QDs 优异的光 催化性能。Zhang 等人^[23] 通过低温介导来液相超 声制备纳米片和量子点(MoS,、WS,、石墨烯),并将 其自组装,形成 QDs 修饰的纳米片 0D/2D 同质结 构,进行电催化水解反应(HER)方面的研究。图3 (g)和(h)分别为 QDs 修饰的纳米片 0D/2D 同质结 构得到极化曲线和 Tafel 图,可以看出量子点修饰的 0D/2D 同质结构表现出极大的 HER 活性,相应的 Tafel 斜率为 75 dec⁻¹、73 dec⁻¹和 63 mV dec⁻¹。操 作稳定性也是 HER 电催化剂的重要指标,图 3(i) 显示了三种 QDs 修饰的纳米片 0D/2D 同质结构在 初始状态和经过2000个循环后的极化曲线。极化 曲线的变化几乎可以忽略不计,说明其具有良好的 催化稳定性。

表1 超声法制备金属硫化物量子点

Tab. 1	Preparation	of metal	l sulfide	QDs .	by u	ltrasonic	method
--------	-------------	----------	-----------	-------	------	-----------	--------

Materials	Dispersants	Ultrasonic Conditions	Centrifugal Speed	Size/nm	Absorption Wavelength/nm	Year	Ref.
${\rm TaS_2\;QDs}$	NMP	210 W/4 h	7000 r/25 min	1.4	195 ~ 520	2020	[21]
MoS ₂ QDs	NMP /		12000 r/20 min	3~6	300 ~ 800	2020	[20]
	NMP	250 W/3h	2000 r/5 min	3.9	250 ~ 800	2015	[26]
	NMP	3.5 h/277K 以下	5500 r/90 min	2.5	300 ~ 800	2014	[27]
	NMP	8 h	/	3.5	350 ~ 700	2015	[28]
	NMP	4 h + 1 h (Probe sonication)	8000 r/30 min	3.69	290 ~ 400	2015	[29]
	NMP	10 h	10000 r/5 min	4.75	300 ~ 800	2017	[30]
	DI	2 h	16000 r/90 min	4.68	300 ~ 800	2020	[31]
		5 min/8 h/32 h/48 h	8000 r/15 min	2~15	200 ~ 800	2018	[32]
	H ₂ SO ₄	24 h	4500 r/1 h	3.4	/	2019	[33]
		200 W	/	3.5	200 ~ 700	2015	[34]
	DFM	500 W/4.0 h	12000 r/30 min	5	200 ~ 600	2022	[35]
	NaOH + Ethanol	580 W/10 h	/	2.89	200 ~ 800	2018	[36]
	IPA : DI (1 : 1)	2 h	4000 r/10 min	1.8	/	2020	[23]
		/	6000 r/30min	1.8	/	2017	[24]
	IPA : DI (7:3)	24 h/25 °C	10000r/30 min	4	/	2019	[37]
	TBA + Ethanol/Water	/	11000 r/10 min	14.7	200 ~ 500	2016	[38]
	EG	/	/	5~10	300 ~ 800	2016	[39]
WS ₂ QDs	NMP	150 W/6 h	7000 r/20 min + 12000 r/40 min	3	300 ~ 800	2017	[40]
	NMP	/	10000 r	2.4	250 ~ 750	2016	[41]
	Water : Ethanol (7:3)	300 W/3 h/5 °C	12000 r/30 min	5	250 ~ 750	2017	[42]
SnS_2 QDs	Ethanol	48 h/90 min	11000 r/40 min	3.2	300 ~ 800	2017	[25]
SnS QDs	NMP	3 ~4 h	/	/	/	2022	[43]
CdS QDs	Ethylenediamine	40 min/65 ℃	/	2~5.6	250 ~ 800	2018	[44]

3.2 生物应用

近年来,纳米技术已成为医学领域的一大热点, 为医学领域的研究提供了新的思路。金属硫化物量 子点具有很多独特的物理和化学性质,使其在生物 成像、细胞标记、药物递送等[45-46]方面具有广泛的 应用前景。Dong 等人^[38]研究了具有优异荧光特性 的 MoS, QDs 在生物成像中的应用。首先探索 MoS, QDs 的稳定性, 如图 4(a) 所示, MoS, QDs 在水、高 盐浓度的 PBS 和细胞培养基中保存两周后的照片, 图中没有观察到明显的沉淀物,表明 MoS, QDs 具有 良好的稳定性。图4(b)和(c)分别是以 HeLa 细胞 为模型来评估所制备 MoS₂ QDs 的体外细胞毒性和 800 nm 激发下的细胞成像。结果表明,当 MoS₂ QDs 的浓度为 15~100 μg/ml 时,没有观察到对 MoS₂ QDs 转染的 HeLa 细胞有明显的细胞毒性。在 200 μg/mL时,出现了细胞活力的轻微下降,表明其 良好的生物相容性。在 800 nm 的激发下, HeLa 细 胞内的绿色区域显示 MoS₂ QDs 成功地穿过细胞膜, 表明其在上转换生物成像方面的巨大潜力。此外, 还研究了 MoS, QDs 在光动力疗法中的潜在应用,图 4(d)是 MoS₂ QDs 和原卟啉 IX(PpIX,一种经典的光 敏剂)的光稳定性比较,在500W的氙灯下照射 60 min后,没有观察到 MoS₂ QDs 的明显下降,而 PpIX 的吸收率下降了 22 %, 这表明了 MoS₂ QDs 的 高光稳定性。Zhong 等人^[36]报道了一种基于内滤 效应(IFE)的 MoS₂ QDs 检测碱性磷酸酶(ALP)活 性的方法,图4(e)是其工作原理图。为了证明上述 基于 IFE 的传感检测,研究了 ALP 对 MoS, QD 在 500 nm 处荧光强度的影响,图4(f)是不同反应时间 下 ALP 对 MoS, QDs 的荧光强度变化,图4(g)是 F₀-F与ALP浓度之间的线性关系(F。和F分别是没有 ALP 和有 ALP 时 MoS, QDs 的荧光强度)。实验结 果表明,随着时间的推移, MoS, QDs 的荧光强度逐 渐增加,而当 ALP 浓度增加时, MoS₂ QDs 的荧光响 应则逐渐减弱。在 ALP 活性范围为 0~5 U/L 内, 具有良好的线性关系,其校准函数为 F₀-F = 5.370 × 10⁴ C + 378.8(其中 C 为 U/L),相关系数为 0.9919。为了证明 MoS, QDs 在生物成像应用中的 潜力,该团队在活细胞中评估了这种基于 IFE 的 ALP 荧光传感测定的性能。图 4(h) 是 MCF - 7 细 胞与不同浓度的 MoS, QDs 培养 12 h 和 24 h 后的存 活率。可以看到, MoS, QDs 在活细胞中展示了良好 的生物兼容性和低细胞毒性,在生物成像应用中有 巨大的潜力。Hao 等人^[20] 通过超薄切割技术和超 声技术制备出多种二维金属化合物的量子点,并利 用共聚焦荧光显微镜对其进行了生物成像实验(以 MoS, QDs 为例),如图4(i)所示,在孵育10h后,观 察到细胞中的绿色荧光,表明其在没有任何其他偶 联的情况下被 HeLa 细胞成功内化。这个结果表明 所制备的金属化合物量子点可以作为有前途、低毒、 生物相容性好、细胞渗透性良好的荧光标记剂,并用 于体外成像。

图4 金属硫化物量子点的催化应用

Fig. 4 The biological applications of metal sulfide QDs

4 结论与展望

在纳米技术领域,因在电子、催化和生物传感等 广泛应用中的优异性能,金属单质和金属化合物材 料在过去几年中得到了深入研究。其中,量子点被 认为是最有吸引力的材料,它以其独特的性质和优 异的性能引起了人们的广泛兴趣,在生物成像、智能 手机、超轻电缆(飞机和卫星)、透明触摸屏、电池、 超薄柔性显示器、超级电容器、晶体管和超级电容器 等方面都具有巨大潜力。超声法是一种制备量子点 的有效方法,具有操作简单、成本低廉、尺寸可控、环 境友好、易于批量生产等优点。虽然,也存在一些问 题和挑战,如分散剂不容易选择,容易出现团聚问 题;超声剥离过程中会输入大量能量,容易造成高温 和高压的环境,对量子点的质量和稳定性产生影响。 因此,可以优化超声剥离的工艺参数,如超声功率、 超声时间、温度等,以获得尺寸相近、分散均匀的量 子点;可以使用表面活性剂、聚合物等稳定剂来调节 量子点的表面性质,并提高其分散性和稳定性。也 可以探索新的合成方法和技术,将两种或多种不同 方法组合,如回流预处理介导的超声法;溶剂热处理 与超声剥离结合制备量子点;利用液氮低温预处理 技术,以及多次的超声剥离,都可以提高量子点的产 率、粒度和分散性。总之,关于超声法制备金属单质 及金属化合物量子点和应用研究已有较多的报道, 未来随着量子点在光电学、生物医学、信息存储等领 域的广泛应用,超声剥离制备量子点的研究将进一 步深入。借助新材料的开发、新工艺的应用和多学 科的交叉,超声剥离制备量子点将迎来更加广阔的 发展前景。

参考文献:

[1] Hu Long, Zhao Qian, Huang Shujuan, et al. Flexible and

efficient perovskite quantum dot solar cells via hybrid interfacial architecture [J]. Nature Communications, 2021, 12(1):466-466.

- [2] Francesco Meinardi, Annalisa Colombo, Kirill A Velizhanin, et al. Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix [J]. Nature Photonics, 2014,8(5):392-399.
- Xin Tang, Matthew M. Ackerman, Menglu Chen, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes [J]. Nature Photonics, 2019, 13 (4): 277 – 282.
- [4] Xu Leimeng, Li Jianhai, Cai Bo, et al. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes [J]. Nature communications, 2020, 11(1):3902.
- [5] Gao Fei, Yang Weiqiang, Liu Xiuling, et al. Highly stable and luminescent silica-coated perovskite quantum dots at nanoscale-particle level via nonpolar solvent synthesis [J]. Chemical Engineering Journal, 2021, 407:128001.
- [6] Xue Qi, Zhang Huijie, Zhu Minshen, et al. Photoluminescent Ti₃C₂ MXene quantum dots for multicolor cellular imaging[J]. Adv Mater, 2017, 29(15):1604847.
- [7] Park Y S, Roh J, Diroll B T, et al. Colloidal quantum dot lasers [J]. Nature Reviews Materials, 2021, 6 (5): 382-401.
- [8] Chen Xingfan. Study on preparation and optical properties of selenide quantum dots and their polymer nanocomposite films [D]. Kunming: Yunnan Normal University, 2022. (in Chinese)

陈星帆. 硒化物量子点及其聚合物纳米复合薄膜的制备与光学性质研究[D]. 昆明:云南师范大学,2022.

[9] Calabro R L, Yang Dongsheng, Kim D Y. Controlled nitrogen doping of graphene quantum dots through laser abla-

- [10] Kalita H, Palaparthy V S, Baghini M S, et al. Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties[J]. Carbon, 2020, 165:9 - 17.
- [11] Palankar R, Medvedev N, Rong A, et al. Fabrication of quantum dot microarrays using electron beam lithography for applications in analyte sensing and cellular dynamics
 [J]. Acs Nano, 2013, 7(5):4617 - 28.
- [12] Li Mengying, Ge Yingxin, Chen Qifan, et al. Hydrothermal synthesis of highly luminescent CdTe quantum dots by adjusting precursors' concentration and their conjunction with BSA as biological fluorescent probes [J]. Talanta, 2007,72(1):89-94.
- [13] Zheng Jingxia, Liu Xinghua, Yang Yongzhen, et al. Rapid and green synthesis of fluorescent carbon dots from starch for white light-emitting diodes[J]. New Carbon Materials, 2018,33(3):276-88. (in Chinese)
 郑静霞,刘兴华,杨永珍,等. 淀粉基荧光碳点的快速 绿色制备及其在白光 LED 中的应用[J]. 新型炭材料, 2018,33(3):276-88.
- [14] Kwon W, Lee G, Do S, et al. Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials[J]. Small, 2014, 10(3):506 - 13.
- [15] Lin Liping, Rong Mingcong, Lu Sisi, et al. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution [J]. Nanoscale, 2015,7(5):1872-8.
- [16] Wang Jing, Fan Saiying, Xia Yi, et al. Room-temperature gas sensors based on ZnO nanorod/Au hybrids: Visiblelight-modulated dual selectivity to NO₂ and NH₃ [J]. J Hazard Mater, 2020, 381:120919.
- [17] Kufer Dominik, Nikitskiy Ivan, Lasanta Tania, et al. Hybrid 2D-0D MoS₂-PbS quantum dot photodetectors [J].
 Advanced materials, 2015, 27(1):176 80.
- [18] Wenjia Zhou, Yuequn Shang, F Pelayo García de Arquer, et al. Solution-processed upconversion photodetectors based on quantum dots [J]. Nature Electronics, 2020, 3 (5):251-258.
- [19] Matea Cristian T, Mocan Teodora, Tabaran Flaviu, et al. Quantum dots in imaging, drug delivery and sensor applications[J]. International Journal of Nanomedicine, 2017, 12:5421-5431.

- [20] Hao Yang, Su Wen, Hou Lingxiang, et al. Monolayer single crystal two-dimensional quantum dots via ultrathin cutting and exfoliating[J]. Science China Materials, 2020, 63 (6):1046 1053. (in Chinese)
 郝阳,宿雯,侯凌翔.超薄切片与剥离制备单层单晶二
 维量子点[J].中国科学.材料科学, 2020, 63 (6): 1046 1053.
- [21] Zhou Liangliang, Sun Chuli, Li Xueming, et al. Tantalum disulfide quantum dots:preparation, structure, and properties[J]. Nanoscale Res. Lett. ,2020,15(1):20.
- [22] Zhang Xiao, Lai Zhuangchai, Liu Zhengdong, et al. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots [J]. Angew Chem Int Ed Engl, 2015, 54(18):5425 - 5428.
- [23] Zhang Jianfang, Zhu Tianyu, Wang Yan, et al. Self-assembly of 0D/2D homostructure for enhanced hydrogen evolution [J]. Materials Today, 2020, 36:83 90.
- [24] Wang Yan, Liu Yang, Zhang Jianfang, et al. Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots [J]. Science Advances, 2017, 3 (12): e1701500-e1701500.
- [25] Fu X, Ilanchezhiyan P, Mohan Kumar G, et al. Tunable UV-visible absorption of SnS₂ layered quantum dots produced by liquid phase exfoliation [J]. Nanoscale, 2017, 9 (5):1820-1826.
- [26] Xu Shengjie, Li Dian, Wu Peiyi. One-Pot, facile, and versatile synthesis of monolayer MoS₂/WS₂ quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction [J]. Advanced Functional Materials,2015,25(7):1127-36.
- [27] Gopalakrishnan D, Damien D, Shaijumon M M. MoS₂
 Quantum Dot-interspersed exfoliated MoS₂ nanosheets
 [J]. Acs Nano,2014,8(5):5297-5303.
- [28] Wu Jingyuan, Zhang Xiaoyang, Ma Xiaodan, et al. High quantum-yield luminescent MoS₂ quantum dots with variable light emission created via direct ultrasonic exfoliation of MoS₂ nanosheets [J]. RSC Advances, 2015, 5 (115): 95178 - 95182.
- [29] Ali J, Siddiqui G U, Choi K H, et al. Fabrication of blue luminescent MoS₂ quantum dots by wet grinding assisted co-solvent sonication [J]. Journal of Luminescence, 2016, 169:342 - 347.
- [30] Wan Jun, Du Xiao, Liu Enzhou, et al. Z-scheme visiblelight-driven Ag₃PO₄ nanoparticle @ MoS₂ quantum dot/ few-layered MoS₂ nanosheet heterostructures with high ef-

ficiency and stability for photocatalytic selective oxidation [J]. Journal of Catalysis,2017,345:281 – 294.

- [31] Khabiri G, Aboraia A M, Omar S, et al. The enhanced photocatalytic performance of SnS₂@ MoS₂ QDs with highly-efficient charge transfer and visible light utilization for selective reduction of mythlen-blue [J]. Nanotechnology, 2020,31(47):475602.
- [32] Sunitha A P, Praveen P, Jayaraj M K, et al. Upconversion and downconversion photoluminescence and optical limiting in colloidal MoS₂ nanostructures prepared by ultrasonication[J]. Optical Materials, 2018, 85:61 – 70.
- [33] Ke Sunkui, Lai Youlin, Li Lihuang, et al. Molybdenum disulfide quantum dots attenuates endothelial-to-mesenchymal transition by activating TFEB-mediated lysosomal biogenesis [J]. ACS Biomater Sci. Eng. ,2019,5(2):1057-1070.
- [34] Dai Wenhao, Dong Haifeng, Fugetsu B, et al. Tunable fabrication of molybdenum disulfide quantum dots for intracellular MicroRNA detection and multiphoton bioimaging
 [J]. Small, 2015, 11(33):4158-4164.
- [35] Zhang Mingliang, Duo Fangfang, Lan Jihong, et al. Decoration engineering induced MoS₂ QDs/BiOBr heterostructures for significantly enhancing visible light photocatalytic capability for the organic dyes and antibiotics removal [J]. Applied Surface Science, 2022, 583.
- [36] Zhong Yaping, Xue Fengfeng, Wei Peng, et al. Water-soluble MoS₂ quantum dots for facile and sensitive fluorescence sensing of alkaline phosphatase activity in serum and live cells based on the inner filter effect [J]. Nanoscale, 2018, 10(45):21298 - 21306.
- [37] Liu Yang, Liang Chenglu, Wu Jingjie, et al. Reflux pretreatment-mediated sonication: a new universal route to obtain 2D quantum dots[J]. Materials Today, 2019, 22:17-24.
- [38] Dong Haifeng, Tang Songsong, Hao Yansong, et al. Fluorescent MoS₂ quantum dots: ultrasonic preparation, Up-

conversion and down-conversion bioimaging, and photodynamic therapy [J]. ACS Appl. Mater. Interfaces, 2016, 8 (5):3107-3114.

- [39] Nguyen T P, Sohn W, Oh J H, et al. Size-dependent properties of two-dimensional MoS₂ and WS₂[J]. The Journal of Physical Chemistry C,2016,120(18):10078 - 10085.
- [40] Zhou Liyan, Yan Shancheng, Wu Han, et al. Facile sonication synthesis of WS₂ quantum dots for photoelectrochemical performance[J]. Catalysts, 2017, 7(1):18.
- [41] Long Hui, Tao Lili, Chiu Chunpang, et al. The WS₂ quantum dot: preparation, characterization and its optical limiting effect in polymethylmethacrylate [J]. Nanotechnology, 2016,27(41):414005.
- [42] Bayat A, Saievar-Iranizad E. Synthesis of blue photoluminescent WS₂ quantum dots via ultrasonic cavitation [J]. Journal of Luminescence, 2017, 185:236 – 240.
- [43] Modi K H, Pataniya P M, Patel V, et al. Self-powered photodetector functionalized by SnS quantum dots[J]. Optical Materials, 2022, 129.
- [44] Kadeer K, Tursun Y, Dilinuer T, et al. Sonochemical preparation and photocatalytic properties of CdS QDs/Bi₂WO₆
 3D heterojunction [J]. Ceramics International, 2018, 44 (12):13797 13805.
- [45] Hu Lianzhe, Zhang Qian, Gan Xiaoyan, et al. Switchable fluorescence of MoS₂ quantum dots: a multifunctional probe for sensing of chromium (VI), ascorbic acid, and alkaline phosphatase activity [J]. Analytical and Bioanalytical Chemistry, 2018, 410(28):7551-7557.
- [46] Zhang Jie, Wang Jie, Yan Tong, et al. InP/ZnSe/ZnS quantum dots with strong dual emissions; visible excitonic emission and near-infrared surface defect emission and their application in in vitro and in vivo bioimaging[J]. Journal of Materials Chemistry B, 2017, 5 (41); 8152-8160.