文章编号:1001-5078(2024)09-01440-09

·光电技术与系统 ·

光电转台 RCS 仿真研究

郭广宇,齐 放,杜瑞娟,周建华 (中国电子科技集团公司第十一研究所,北京,100015)

摘 要:通过软件仿真计算光电转台的雷达散射截面积(radar cross section, RCS)。基于散射 的高频局部性原理完成目标的 RCS 预估,在 S、C、X 波段,0~3°入射余角条件下对光电转台的 RCS 进行仿真。将复杂的光电转台分解,研究各部分 RCS 特性并对光电转台开展隐身设计。 对完成隐身设计后的转台进行仿真分析,隐身设计后均值大于 0.5 m² 的 RCS 占比约为 18.18 %,光电转台隐身特性提升明显。

关键词: 雷达散射截面积; 光电转台; 仿真计算; 隐身设计 中图分类号: TN95; TN202 文献标识码: A DOI: 10.3969/j. issn. 1001-5078.2024.09.015

Research on RCS simulation of photoelectric turntable

GUO Guang-yu, QI Fang, DU Rui-juan, ZHU Jian-hua

(The 11th Research Institute of CETC, Beijing 100015, China)

Abstract: The radar cross section (RCS) of a photoelectric turntable through software simulation. Based on the principle of high-frequency locality of scattering, the RCS prediction of the target is completed. Simulate the RCS of the photoelectric turntable in the S, C and X bands, under $0 \sim 3$ incident residual angle. Decompose the complex optoelectronic turntable, study the RCS characteristics of each part, and carry out stealth design of the optoelectronic turntable. A simulation analysis was performed on the turntable after the stealth design was completed. After the stealth design, the proportion of RCS with an average value greater than 0.5 m² was approximately 18. 18 %. The stealth characteristics of the photoelectric turntable were significantly improved.

Keywords: radar cross section; photoelectric turntable; simulation analysis; stealth design

1 引 言

雷达散射截面积(RCS)是衡量目标物体隐身 性能的重要参数^[1]。采用软件仿真的方法分析目 标的 RCS 特性具有便捷、快速、经济等优点^[2-3]。 特别是对于外观复杂的目标,软件仿真可以对敏 感位置进行网格细化,通过多次仿真迭代减小误 差,得到准确、可靠的 RCS 参数^[4-5]。光电转台作 为侦察、探测的关键设备,广泛安装于各型舰船、 飞机的外侧,其自身雷达隐身性能直接影响系统 总体隐形特性。光电转台由多部分组成,整体外 形复杂,不同入射余角和雷达波段设备的 RCS 特 性差别明显。文章对某型光电转台的 RCS 特性进 行仿真分析,研究光电转台在 S、C、X 波段的散射 特性,提出光电转台的隐身设计思路,并仿真验证 转台隐身设计效果。

2 RCS 仿真原理

RCS 仿真方法基于 Maxwell 方程组,对于复杂 目标散射,可以基于散射的高频局部性原理完成目 标的 RCS 预估,即当入射波远远小于散射体尺寸 时,目标的散射场主要由各个独立的散射中心产生 的回波叠加而成^[6-7]。因此,可以依据复杂目标的 局部特点对其进行拆分,对拆分后的目标采用相应 的预估技术完成各部件的散射计算,最后将所有部 件的散射场相干叠加得到目标的总场。直接散射场 的 RCS 复数形式:

$$\sqrt{\sigma_i^P} = j \frac{k}{\sqrt{\pi}} I(\hat{r}, 2\hat{i})$$

多次散射场的 RCS 复数形式:

$$\sqrt{S_j^c} = \begin{cases} 2\sqrt{p} A_f \\ 2\sqrt{p} A_{fq} \end{cases}$$

棱边绕射场的 RCS 复数形式:

$$\sqrt{\sigma_k^{D}} = \frac{L}{\sqrt{\pi} \sin^2 \beta} \frac{\sin[kL\cos(\beta)]}{kL\cos(\beta)} [(\hat{e}_i \cdot \hat{t}) \cdot$$

 $(\hat{e}_s \cdot \hat{t})f + (\hat{h}_i \cdot \hat{t})(\hat{h}_s \cdot \hat{t})g]e^{2j\hat{k}\hat{i}\cdot\vec{R}_c}$

利用高频局部性原理,将目标表面分解为不同 散射部件,依据其散射类型分别求的其 RCS 复数 值,最终通过复数叠加得到整个目标的远场 RCS:

$$\sigma = 20 \lg \left| \sum_{i=1}^{l} \sqrt{\sigma_i^P} + \sum_{j=1}^{m} \sqrt{\sigma_j^C} + \sum_{k=1}^{n} \sqrt{\sigma_k^D} \right|$$

因此,论文基于设备各组件的 RCS 特性,对结构进行优化和缩减,通过计算电磁方法评估组件装配后装备整体的 RCS,结合优化技术,实现结构的 RCS 缩减。

3 光电转台 RCS 特性分析

光电转台设备主要由球形负载仓、U型架、方位 底座组成,如图1所示。转台可以实现方位360°连 续旋转,光电转台作为侦察、探测设备,普遍安装于 外表面平台,四周空旷无遮挡,以保证视野。最可能 受到入射余角为0~3°的雷达波探测,因此,仿真时 需要对方位0~360°,入射余角0~3°的各频点进行 分析。通常认为,当光电转台设备在S、C、X 波段各 频点 RCS < 0.5m²时,设备具有良好的隐身特性。

图1 光电云台结构示意

Fig. 1 Schematic diagram of photoelectric turntable structure

对于图 1 所示的未隐身设计设备模型,在 S、C、X 波段,2 GHz~12 GHz,步长为 1 GHz,共 11 个频点下的 RCS 进行仿真计算,各频点 RCS 仿真结果表 1 所示。

通过统计可以看出,目前的设计对于大多数频段 可以满足均值 <0.5 m² 的要求,有接近 50 % 的评测 范围可以满足 <0.5 m² 的要求。整体而言,设备仍有 部分角域和频域的 RCS 较大,需继续优化设计。

入射余角		频率/GHz											
	2	3	4	5	6	7	8	9	10	11	12		
0	0. 349	0.074	0.342	0. 169	0. 833	0. 161	0. 681	0.235	0. 296	0. 746	0.262		
1°	0. 409	0.056	0. 295	0.362	0. 222	0. 922	0. 207	0.727	0. 059	0. 465	0.607		
2°	0. 445	0.078	0. 231	0. 405	0. 029	1.067	0. 187	0.659	0. 486	0. 155	0.473		
30	0.440	0 153	0 141	0 352	0.278	0.207	1 011	0.045	0.855	0.243	0.255		

表 1 方位面 RCS 均值统计 Tab. 1 Statistics of mean RCS in azimuth

4 优化改进及评估分析

4.1 隐身特性优化

光电转台设备主要可大致分解为球体、柱体和圆台的组合体及结构细节的调整,如图1所示。因此, 其散射特性与球体、柱体和圆台结构关联密切。首 先,对球体、柱体和椎体的 RCS 特性进行分析。

由电磁理论可知,球体的 RCS = πa^2 ,其中 a 为 球体半径。首先,采用计算电磁学方法分析半径为 380 mm 的 球 体,如 图 2 所 示,其 均 值 为 -3.39 dBsm,其理论值为 -3.43 dBsm。可以看出, 电磁仿真算法具有足够的精度进行评估,且可以使 用解析公式作为球体 RCS 评估的工具,进行球体 设计。

通过缩减球体半径,可以有效减小该部件的 RCS,因此,可以在保证装备安装的前提下,减小 球体半径,经过论证,初步设定球体半径 380 mm。

由电磁理论可知,柱体的 RCS = $\frac{2\pi L^2 a}{\lambda}$,其中 a

为柱体半径, *L* 为柱体高度。采用计算电磁学方法 分析半径为110 mm、高度为86 mm的柱体, 如图3 所示,均值为 -9.36 dBsm,其理论值为 -9.34 dBsm。可以看出, 电磁仿真算法具有足够的 精度进行评估, 且可以使用解析公式作为柱体 RCS 评估的工具, 进行柱体设计。

Fig. 3 Column RCS characteristics

通过缩减柱体半径和高度,均可以有效减小该 部件的 RCS,因此,可以在保证装备安装的前提下, 减小柱体半径和高度,经过论证,初步设定柱体半径 110 mm,高度 86 mm。

继续分析了一个锥台面,锥台面的倾角为 55°, 可以看出,锥台面的最大散射方向在 125°,即为垂 直锥面方向,此时峰值为 – 14.65 dBsm,与理论值 RCS = $\frac{2\pi L^2 a}{r}$ —致。

通过缩减锥台半径和高度,同样可以有效减小 该部件的 RCS,因此,可以在保证装备安装的前提 下,减小锥台半径和高度,经过论证,初步设定锥台

上半径110 mm,下半径132 mm,斜面38 mm。

当各部件组装在一起时,装备的 RCS 是各部件 散射贡献的复矢量叠加,不能简单地通过部件 RCS 求和来得到,需要通过计算电磁学方法,评估整体装 备的 RCS。此时,各部件之间存在的遮挡会减小 RCS,但同时各部件之间的多次反射也会增加 RCS, 需要合理地设计部件相互关系,在关心角域缩 减 RCS。

由于结构具有轴对称特性,此后的分析不再进 行方位面的分析,认为方位面 RCS 为相同的值,仅 分析俯仰面变化。对于关心的余角范围(0~3°), 对应此时坐标系的俯仰角为(90°~93°)。对于锥 台组合体,在90°和125°均会出现较大的峰值,对应 圆柱和锥面的法向散射方向,此时关心角域的均值 为-9.68 dBsm。

首先,在保持原有结构的前提下,统一用锥台包 裹锥台组合体,形成如上图所示的锥台结构,此时锥 面倾角在 80°,因此其最大散射方向在 100°,在关心 角域的均值为 – 18.15 dBsm,相对于锥台组合体已 有较大幅度的缩减,但可以看出,调整倾角,使得 RCS 谷值角度增大,将关心角域放置在谷值附近, 有可能获取更小的 RCS。

图 5 锥台组合俯仰 RCS 特性

Fig. 5 RCS characteristics of conical platform combination pitch

进一步,考虑到锥台倾角应避免敏感角域,对于 余角(0,3°),倾角应在78°左右,调整锥面倾角为 78°,此时上半径110 mm,下半径135 mm,均值为 -25.3 dBsm,相对于锥台组合的均值-9.7 dBsm, 此时的结构实现了大幅的缩减,如图6所示。

为进一步优化设备 RCS 特性,首先,根据装备 功能要求组合出较高隐身性能的设备。其次,在保 障设备功能和性能的前提下,对局部结构进行了优 化设计,对设备结构接缝处进行了倒角等处理,同 时,通过优化设计转台大小和开窗位置,实现了设备 的隐身设计。

4.2 隐身特性分析

将上述外形隐身设计措施进行组合,修改设备 外形,最终设备外形如图7所示。

针对隐身设计后的设备,同样进行 S、C、X 波段 共11 个频点,4 种入射余角时的散射特性分析,为 方便观察强散射点出现角度,将其以极坐标方式进

行 RCS 曲线绘制, RCS 曲线与设备角度的对应关系 如图 8 所示。

Fig. 7 Schematic diagram of equipment structure after stealth design

(m)

(n)

1.0

9 GHz,VV极化

图 8 S、C、X 波段各频点下 RCS 仿真曲线

所示。

Fig. 8 RCS simulation curves at each frequency point in S,C, and X bands

综上,项目组对隐身设计后的设备在3个频段, 对4种入射余角时的散射特性进行了分析,其RCS 仿真均值在各角度及频点下的统计结果如表 2 表 2 隐身设计后设备方位面 RCS 均值统计

其中,均值大于 0.5 m² 的 RCS 占比约为 18.18 %,较未隐身设计的设备,RCS有明显缩减。

	-	nd sa se s		ле да ут 1=		v 12			
Tab. 2 Average 1	RCS s	statistics	of e	equipment	azimuth	plane	after	stealth	design

入射余角		频率/GHz											
		2	3	4	5	6	7	8	9	10	11	12	
0°	нн	0. 3141	0. 2238	0. 1342	0. 4948	0.076	0. 6102	0.0752	0. 5596	0. 2681	0.46	0. 7038	
	VV	0. 1516	0. 2877	0.1118	0. 4543	0.0788	0. 529	0.1145	0. 4054	0. 385	0. 2907	0.9671	
1°	нн	0. 3441	0. 1558	0. 2613	0. 3883	0. 1885	0. 4732	0. 1742	0. 524	0. 1188	0. 731	0. 1147	
	VV	0. 2355	0. 2349	0. 2435	0. 3393	0. 1484	0. 4605	0. 0981	0. 6148	0.0578	0. 8286	0. 1064	
2°	нн	0. 3749	0.078	0.405	0. 1682	0. 4595	0. 1746	0. 5824	0. 1486	0. 5361	0. 4992	0. 4992	
	VV	0. 3102	0. 1644	0. 387	0. 1525	0. 3264	0. 1903	0. 3161	0. 3191	0. 3881	0. 1639	0. 5283	
3°	нн	0. 3818	0.0537	0. 4666	0.0414	0. 6685	0.0756	0. 7392	0.1128	0. 5232	0. 1996	0. 4413	
	VV	0. 3838	0. 1042	0. 469	0.0417	0. 4225	0.0672	0. 3704	0.0661	0.466	0.0707	0.6071	

5 结 论

采用软件仿真的方法计算设备的 RCS 特性避 免了繁琐理论计算的同时避免了试验的高额代价和 风险代价。对外形复杂的某型光电转台进行 RCS 仿真分析,仿真计算其在S、C、X 波段,入射余角0~ 3°下的 RCS 值,针对模型特征进行隐身设计,并对 隐身设计后的设备在3个频段,对4种入射余角时 的散射特性进行了分析。隐身设计前均值大于 0.5 m²的 RCS 占比约为 50 %, 隐身设计后均值大 于0.5 m²的 RCS 占比约为 18.18 %。

参考文献:

[1] Han Hongbin, Liu Shaoqiang. Research on the simulation of the target RCS based on HFSS[J]. Foreign Electronic Measurement Technology, 2015, 34(3):60-63. (in Chinese)

> 韩红斌,刘少强.基于 HFSS 对目标 RCS 的仿真研究 [J]. 国外电子测量技术,2015,34(3):60-63.

- [2] Ji Kefeng, Wang Shixi. Simulation and modeling of space object's wideband rader signatures [J]. Modern Radar, 2007,29(3):2-36. (in Chinese)
 计科峰,王世晞. 空间目标宽带雷达特征信号仿真建模[J].现代雷达,2007,29(3):2-36.
- [3] GuHaohan, Jiang Naiwen, Feng Weichao. Numerical analysis and optimization of RCS influence on unmanned helicopter hub[J]. Helicopter Technique, 2023(1):14-19. (in Chinese)
 顾浩涵,姜乃文,冯维超. 无人直升机桨毂 RCS 影响计算分析与优化[J]. 直升机技术, 2023(1):14-19.
- [4] Han Xingxing. Parallel MOM Analysis of scattering problems of electrically large complex targets [J]. Techniques of Automation and Applications, 2021, 40(2):69-73. (in Chinese)

韩星星. 电大尺寸复杂目标散射问题的并行矩量法分

析[J]. 自动化技术与应用,2021,40(2):69-73.

- [5] Wei Bing, Chen Juan, He Xinbo, etc. New development of time-domain numerical algorithms for electromagnetic field[J]. Chinese Journal of Radio Science, 2020, 35(1): 55 68. (in Chinese)
 魏兵,陈娟,何欣波等. 电磁场时域数值算法的新进展
 [J]. 电波科学学报, 2020, 35(1): 55 68.
- [6] Hu Jie, Li Huifang, Xia Chenyang. The analysis of convergence of the bistatic multiphoton quantum radar cross section [J]. Quantum Information Processing, 2023, 22 (10):370.
- Balabhkha N. P, Konyaev D. A, Shapkina N. E. A promising approach to the determination of bistatic radar cross section by electromagnetic near-field measurements (three-dimensional vector case) [J]. Moscow University Physics Bulletin, 2022, 77(5):713-722.